(12)

United States Patent

Lim et al.

US009105078B2

US 9,105,078 B2
Aug. 11, 2015

(10) Patent No.:
45) Date of Patent:

(54)

(735)

(73)
")

@

(22)

(65)

(1)

(52)

(58)

(56)

SYSTEMS AND METHODS FOR LOCAL 4,589,089 A 5/1986 Frederikson
TONE MAPPING 4,605,961 A 8/1986 Frederikson
4,682,360 A 7/1987 Frederikson
. . X 4,694,489 A 9/1987 Frederikson
Inventors: Suk Hwan Lim, Mountain View, CA 4742543 A 5/1988 Frederikson
(US); D. Amnon Silverstein, Palo Alto, 4,743,959 A 5/1988 Frederikson
CA (US); Guy Cote, San Jose, CA (US); 4,799,677 A 1/1989 Frederikson
Steven David Hordley, Los Gatos., CA (Continued)
(US); Graham Finlayson, Cupertino,
CA (US); Weichun Ku, San Jose, CA FOREIGN PATENT DOCUMENTS
(US); Joseph P. Bratt, San Jose, CA
(as) DE 19826584 Al 12/1999
EP 0437629 Al 7/1991
Assignee: APPLE INC., Cupertino, CA (US) (Continued)
Notice: Subject. to any disclaimer,. the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 310 days. Busin, et al.; “Color Spaces and Image Segmentation”, Advances in
Apol. No.: 13/485.421 Imaging and Electron Physics, vol. 151, Jan. 1, 2008, pp. 65-168.
PPl RO~ ’ (Continued)
Filed: May 31, 2012
Prior Publication Data Primary Examiner — Yon Couso
US 2013/0322753 Al Dec. 5, 2013 (74) Attorney, Agent, or Firm — Fletcher Yoder PC
Int. CL.
GOG6K 9/00 (2006.01) (57) ABSTRACT
GO6T 5/00 (2006.01) . .
US. CL Systems and methods for local tone mapping are provided. In
CPC GO6T 5/001 (2013.01); GO6T 5/008 one example, an electronic device includes an electronic dis-
(2013.01); GO6T 2207/10024 (2013.01); GO6T play, an imaging device, and an image signal processor. The
2207/20012 (2013.01) electronic display may display images of a first bit depth, and
Field of Classification Search the imaging device may include an image sensor that obtains
USPC ..o 382/162, 167, 260, 263, 264; 345/102, image data of a higher bit depth than the first bit depth. The
345/204, 214, 589, 690; 358/1.9, 3.01; image signal processor may process the image data, and may
348/272, 597, 231.3 include local tone mapping logic that may apply a spatially
See application file for complete search history. varying local tone curve to a pixel of the image data to pre-
serve local contrast when displayed on the display. The local
References Cited tone mapping logic may smooth the local tone curve applied
US. PATENT DOCUMENTS to the iqtensity difference between the pixel and another
nearby pixel exceeds a threshold.
4,369,430 A 1/1983 Sternberg
4,464,788 A 8/1984 Sternberg et al.
4,475,172 A 10/1984 TFrederikson 11 Claims, 172 Drawing Sheets
24 14 12 28
/ / / /
NETWORK INPUT 170
DEVICE STRUCTURES PORTS DISPLAY
1]
16
| / f
TEMPERATURE o IMAGE PROCESSING
20~ SENSOR PROCESSORIS) CIRCUITRY 32
J i
i i
POWER STORAGE IMAGING
SOURCE DEVICE(S) MEMORY DEVICE(S)
) N N N
26 20 18 30

US 9,105,078 B2

Page 2
(56) References Cited 8,059,892 B1 11/2011 Fan
8,081,224 B2 12/2011 Lin
U.S. PATENT DOCUMENTS 8,081,242 B2 12/2011 Shiraishi
8,089,524 B2 1/2012 Urisaka
4,979,738 A 12/1990 Frederikson 8,135,068 Bl 3/2012 Alvarez et al.
5,227,863 A 7/1993 Bilbrey et al. 8,159,570 B2 4/2012 Negishi
5247355 A 9/1993 Frederikson 8,169,514 B2 5/2012 Watanabe et al.
5,272,529 A 12/1993 Frederikson 8,228,406 B2~ 7/2012 Kuo et al.
5301,038 A 4/1994 Todd 8,243,191 B2 82012 Uchida
5.426.448 A 6/1995 Seal 8,259,198 B2 9/2012 Cote et al.
5.496.106 A 3/1996 Anderson 8,294,781 B2 10/2012 Cote et al.
5,552:827 A 9/1996 Maenaka et al. 8,330,772 B2 12/2012 Cote et al.
5,640,613 A 6/1997 Yuyama et al. 8,358,319 B2 1/2013 Cote et al.
5,644,336 A 7/1997 Herbert 8,391,598 B2 3/2013 Lin oo 382/167
5,694,227 A 12/1997 Starkweather 8,766,999 B2* 7/2014 Lin ..o 345/589
5764291 A 6/1998 Fullam 2001/0035910 A1 11/2001 Yukawa et al.
5.790.705 A 8/1998 Anderson et al. 2002/0135683 Al 9/2002 Tamama et al.
5800178 A 0/1998 Anderson of al. 2002/0140845 A1 10/2002 Yoshida et al.
5821987 A 10/1998 Larson 2003/0001958 A1 1/2003 Hoshuyama
5,822,465 A 10/1998 Normile et al. 2003/0071746 Al 4/2003 Koyanagi
5,867,214 A 2/1999 Anderson et al. 2003/0151673 Al 8/2003 Hashimoto et al.
5,960,106 A 9/1999 Tsuchiya et al. 2003/0161402 Al 8/2003 Horowitz
5,973,734 A 10/1999 Anderson 2003/0214594 Al 11/2003 Bezryadin
5.991.465 A 11/1999 Anderson et al. 2004/0028265 Al 2/2004 Nishide
6.011.585 A 1/2000 Anderson 2004/0119879 Al 6/2004 Lee
6 028’611 A 2/2000 Anderson et al. 2004/0155970 Al 8/2004 Johannesson et al.
6.031.964 A 5/2000 Anderson 2004/0165090 Al 8/2004 Ning
6122411 A 0/2000 Shen ot al. 2004/0165530 A1 8/2004 Bedekar et al.
6,141,044 A 10/2000 Anderson et al. 2004/0190092 Al 9/2004 Silverbrook et al.
6.157.394 A 12/2000 Anderson et al. 2004/0212730 Al 10/2004 Maclnnis et al.
6198514 Bl 3/2001 Lee et al. 2004/0218235 A1 11/2004 Kawano
6,278’480 Bl 8/2001 Kurahashi et al. 2004/0240549 Al 12/2004 Cote et al.
6,356:276 Bl 3/2002 Acharya 2004/0240556 Al 12/2004 Winger et al.
6,377,702 Bl 4/2002 Cooper 2004/0247186 Al 12/2004 Graves et al.
6,411,302 Bl 6/2002 Chiraz 2004/0257461 Al 12/2004 Toyomura
6,549,214 Bl 4/2003 Patel et al. 2005/0012759 Al 1/2005 Valmiki et al.
6,556,242 Bl 4/2003 Dunton et al. 2005/0024369 Al 2/2005 Xie
6,618,045 Bl 9/2003 Lin 2005/0030395 Al 2/2005 Hattori
6,639,628 Bl 10/2003 Lee et al. 2005/0041806 Al 2/2005 Pinto et al.
6 745’012 Bl 6/2004 Ton et al. 2005/0063465 Al 3/2005 Cote etal.
6.788.823 B2 9/2004 Allred ot al. 2005/0063586 Al 3/2005 Munsil et al.
6876385 Bl 4/2005 Sano 2005/0088455 Al 4/2005 Chang
6,954:193 Bl 10/2005 Andrade et al. 2005/0088550 Al 4/2005 Mitsunaga et al.
6.959.044 B1 10/2005 Jin et al. 2005/0105618 Al 5/2005 Booth et al.
RE38.896 E 11/2005 Anderson 2005/0111552 A1 5/2005 Sugio et al.
RE38’911 E 12/2005 Anderson et al. 2005/0117040 Al 6/2005 Matsutani
7,002:627 Bl 2/2006 Raffy et al. 2005/0122335 Al 6/2005 Maclnnis et al.
7,027,665 Bl 4/2006 Kagle et al. 2005/0122341 Al 6/2005 Maclnnis et al.
RE39.213 E 8/2006 Anderson et al. 2005/0123282 Al 6/2005 Novotny et al.
7 126’640 Bl 10/2006 Takei 2005/0134602 Al 6/2005 Winger et al.
7.136.073 B2 11/2006 Newman 2005/0134730 Al 6/2005 Winger et al.
7 170’938 Bl 1/2007 Cote et al. 2005/0135699 Al 6/2005 Anderson
7.209.168 B2 4/2007 Post 2005/0140787 Al 6/2005 Kaplinsky
7,231:587 B2 6/2007 Novotny et al. 2005/0162531 Al 7/2005 Hsu et al.
7,257,278 B2 8/2007 Burks et al. 2005/0216815 Al 9/2005 Novotny et al.
7,277,595 Bl 10/2007 Reid 2005/0259694 Al 112005 Garudadri et al.
7 310’371 B2 12/2007 Cote et al. 2005/0270304 Al 12/2005 Obinata
7324505 B2 1/2008 Cote ot al. 2005/0280725 Al 12/2005 Spampinato et al.
7,327,786 B2 2/2008 Winger et al. 2005/0286097 Al 12/2005 Hung et al.
7362376 B2 4/2008 Winger et al. 2006/0002473 Al 1/2006 Mohan et al.
7,362,804 B2 4/2008 Novotny et al. 2006/0012841 Al 1/2006 Tsukioka
7,428,082 B2 9/2008 Nakajima 2006/0126724 Al 6/2006 Cote et al.
7454057 B2 11/2008 Tsukioka 2006/0146152 Al 7/2006 Jo et al.
7.483.058 Bl 1/2009 Frank et al. 2006/0158462 Al 7/2006 Toyama et al.
7.502.505 B2 3/2009 Malvar et al. 2006/0222243 Al 10/2006 Newell et al.
7,515,765 Bl 4/2009 MacDonald et al. 2006/0227867 Al 10/2006 Winger et al.
7.545.994 B2 6/2009 Reid 2006/0285129 Al 12/2006 Yamaguchi et al.
7.596.280 B2 9/2009 Bilbrey et al. 2006/0290957 A1 12/2006 Kim et al.
7,602,849 B2 10/2009 Booth et al. 2007/0009049 Al 1/2007 Sullivan
7,612,804 Bl 11/2009 Marcu et al. 2007/0030898 Al 2/2007 Cote
7,620,103 B2 11/2009 Cote et al. 2007/0030902 Al 2/2007 Winger et al.
7,633,506 B1 12/2009 Leather et al. 2007/0030903 Al 2/2007 Cote et al.
7,657,116 B2 2/2010 Matsuoka et al. 2007/0030904 Al 2/2007 Winger et al.
7,664,872 B2 2/2010 Osborne et al. 2007/0030905 Al 2/2007 Cote
7,693,411 B2 4/2010 Kwon et al. 2007/0030906 Al 2/2007 Cote et al.
7,796,169 B2 9/2010 Kitani 2007/0071343 Al 3/2007 Zipnick et al.
7,860,334 B2 12/2010 Lietal 2007/0071434 Al 3/2007 Kawanami
7,929,044 B2 4/2011 Chen et al. 2007/0077056 Al 4/2007 Uchiumi et al.
7,932,935 B2 4/2011 Takei 2007/0103564 Al 5/2007 Chiba

US 9,105,078 B2
Page 3

(56)

2007/0110425
2007/0126885
2007/0139535
2007/0160139
2007/0183681
2007/0188634
2007/0216785
2007/0236594
2007/0258641
2007/0263099
2007/0263724
2007/0291142
2008/0031327
2008/0056606
2008/0056704
2008/0079826
2008/0088857
2008/0088858
2008/0094485
2008/0117330
2008/0122975
2008/0198266
2008/0198932
2008/0204574
2008/0204600
2008/0205854
2008/0218630
2008/0239279
2008/0253652
2008/0266406
2008/0278601
2008/0292219
2009/0027525
2009/0041376
2009/0043524
2009/0047010
2009/0052797
2009/0094485
2009/0129695
2009/0136225
2009/0174797
2009/0207728
2009/0251584
2009/0273679
2009/0295992
2009/0316961
2010/0061648
2010/0080547
2010/0156917
2010/0165144
2010/0172581
2010/0202262
2010/0215260
2010/0309346
2010/0329554
2011/0090242
2011/0090351
2011/0090371
2011/0090380
2011/0090381
2011/0090960
2011/0091101
2011/0118744
2011/0200098
2011/0200104
2011/0205389
2011/0228846
2011/0249142
2011/0285737
2011/0301870
2012/0007875
2012/0026368
2012/0044372
2012/0050563
2012/0050566

References Cited

U.S. PATENT DOCUMENTS

Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

5/2007
6/2007
6/2007
7/2007
8/2007
8/2007
9/2007
10/2007
11/2007
11/2007
11/2007
12/2007
2/2008
3/2008
3/2008
4/2008
4/2008
4/2008
4/2008
5/2008
5/2008
8/2008
8/2008
8/2008
8/2008
8/2008
9/2008
10/2008
10/2008
10/2008
11/2008
11/2008
1/2009
2/2009
2/2009
2/2009
2/2009
4/2009
5/2009
5/2009
7/2009
8/2009
10/2009
11/2009
12/2009
12/2009
3/2010
4/2010
6/2010
7/2010
7/2010
8/2010
8/2010
12/2010
12/2010
4/2011
4/2011
4/2011
4/2011
4/2011
4/2011
4/2011
5/2011
8/2011
8/2011
8/2011
9/2011
10/2011
11/2011
12/2011
1/2012
2/2012
2/2012
3/2012
3/2012

Lin et al.
Hasegawa
Tsuchida
Vasquez et al.
Lietal.

Takei
Nomura et al.
Hasan et al.
Srinivasan et al.
Motta et al.
Cote et al.
Nobh et al.
Wang et al.
Kilgore
Ovsiannikov
Noh

Zimmer et al.
Marcu et al.
Huang
Winger et al.
Winger et al.
Kurane

Sei

Kyung

Xu et al.

Xu et al.
Kempf et al.
Krishnaswamy
Gupta et al.
McLeod et al.
Goel et al.
Keall et al.
Lin et al.
Carletta et al.
Hung et al.
Yoshida et al.
Matsushita et al.
Voruganti
Aldrich et al.
Gai et al.

Hu et al.
Bryant et al.
Alakarhu
Gere et al.
Richardson et al.

Gomez Suarez et al.

Wong et al.
Yanada

Lee et al.

Lee

Husoy

Adams et al.
Niikura
Brunner et al.
Zhai et al.
Cote et al.
Cote et al.
Cote et al.
Cote et al.
Cote et al.
Leontaris et al.
Cote et al.
Lehmann et al.
Kim et al.
Korodi et al.
Zhang

Eilat et al.
Brunner

Lin

Tam et al.
Sethuraman et al.
Cote et al.
Cote et al.
Cote et al.
Cote et al.

2012/0050567 Al
2012/0051730 Al
2012/0069143 Al
2012/0081385 Al
2012/0081553 Al
2012/0081567 Al
2012/0081578 Al
2012/0081580 Al
2012/0113130 Al

3/2012 Cote et al.
3/2012 Cote et al.
3/2012 Chu

4/2012 Cote et al.
4/2012 Cote et al.
4/2012 Cote et al.
4/2012 Cote et al.
4/2012 Cote et al.
5/2012 Zhai et al.

2013/0335438 Al* 12/2013 Wardccoooevvviiinnn 345/589
2014/0002478 Al* 1/2014 Ballestad et al. ... 345/589
2014/0010448 Al* 1/2014 Lischinski etal. 382/167

FOREIGN PATENT DOCUMENTS

EP 0503962 A2 9/1992
EP 0540137 Al 5/1993
EP 0685797 A1 12/1995
EP 1758034 A2 2/2007
EP 1998557 A2 12/2008
EP 2015562 Al 1/2009
GB 2275851 A 9/1994
GB 2449738 A 12/2008
JP 4307831 A 10/1992
JP 4350706 A 12/1992
JP 8317425 A 11/1996
JP 2004023279 A 1/2004
JP 2006140654 A 6/2006
JP 20050269645 A 3/2007
JP 2007201530 A 8/2007
JP 2010028487 A 2/2010
KR 1020060078139 A 7/2006
KR 1020080078076 A 8/2008
KR 1020080102172 A 11/2008
KR 1020090010906 A 1/2009
KR 1020090045305 A 5/2009
KR 1020090087811 A 8/2009
WO 2006058051 A2 6/2006
WO 2006084266 Al 8/2006
WO 2006128478 Al 12/2006
WO 2007078912 Al 7/2007
OTHER PUBLICATIONS

Einhorn, et al.: “A metadata model for capturing presentations”,
Advanced Learning Technologies, 3rd IEEE International Confer-
ence, Jul. 9-11, 2003; pp. 110-114.

F. Durand, et al. Fast bilateral filtering for the display of high-dy-
namic-range images. In Proc. ACM SIGGRAPH 2002, Annual con-
ference on Computer Graphics, pp. 257-266, 2002.

Fen, et al.; “Preferred color spaces for white balancing,” Proceedings
ofthe SPIE, The international Society for Optical Engineer SPIE, vol.
5017, Jan. 21, 2003; pp. 342-350.

K. Devlin. A review of tone reproduction techniques. Technical
Report CSTR-02-005, Department of Computer Science, University
of Bristol, Nov. 2002.

Ledda, Patrick: Development of a perceptual Tone Mapping Opera-
tor. University of Bristol, 2002.

M. Ashikhmin. A tone mapping algorithm for high contrast images.
In 13th Eurographics Workshop on Rendering. Eurographics, Jun.
2002.

P. Ledda, et al. Evaluation of tone mapping operators using a high
dynamic range display. In Proc. ACM SIGGRAPH 2005, Annual
Conference on Computer Graphics, pp. 640-648, 2005.

P. Viola, et al. , “Rapid object detection using a boosted cascade of
simple features,” in Proceedings of IEEE Conf on Computer Vision
and Pattern Recognition. 2001.

P. Viola, et al. Robust real-time object detection. 2nd Intl Workshop
on Statistical and Computational Theories of Vision, 2001.

Sohn et al. “SoC Design of an Auto-Focus Driving Image Signal
Processor for Mobile Camera Applications”, IEEE Transactions on
Consumer Electronics, vol. 52, No. 1, Feb. 2006.

Takahashi, et al.; “Color Demosaicing Using Asymmetric Direc-
tional Interpolation and Hue Vector Smoothing,” IEICE Transaction
on Fundamentals of Electronics, Communications and Computer
Sciences; Engineering Sciences Society, vol. E91A, No. 4, Apr. 1,
2008, pp. 978-986.

* cited by examiner

US 9,105,078 B2

Sheet 1 of 172

Aug. 11, 2015

U.S. Patent

CE~

o€ o1 0z 9z
N \ \ N
SERTEN OERTEN 30uN0S
INIDYII AJONIN I9YY0LS HIMOd
! i
i §
FTIRNR S P
INISSIO0Nd IOV (S140S53004d TUALYYIINIL
i \ i
f Il }
STH04 STUNLONYLS ERITEL
AV1dSIa 0/ LNdNI MHOMLIN
{ { ((
8z 21 b1 ve
=01

US 9,105,078 B2

Sheet 2 0f 172

Aug. 11, 2015

U.S. Patent

Gb

Gr

FIG. 2

U.S. Patent Aug. 11, 2015 Sheet 3 of 172 US 9,105,078 B2

30 28
- = ;. ~
58
[-X-X-] }
5244\ = =
O oD
54
R
N 42
54
) 56
YO O & loBY
a

i
P

- |

FIG. 4

U.S. Patent Aug. 11, 2015 Sheet 4 of 172 US 9,105,078 B2

00—~ 12b 12¢ 14

L .

A\ 30
K”}—Z/} — =

e] O C__?_D ‘¢6:-45'

64 74 A
) = 1:25 PM 3 E>

14 <I é Y (0 WEDNESDAW68r:\ N [N 66
@|[29] [£22] (©F
_ J J J \

y,
TEXT ~ CALENDAR PHOTOS ~ CAMERA

e ~

O A\ “"Om) O

e 9 AR,

59 YOUTUBE ~ STOCKS ~ MAPS iWEATHER

Sl

CLOCK CALCULATOR NOTES SETTINGS

54ﬁ% g
& =)

PHONE MAIL SAFAR

L — 42

U.S. Patent Aug. 11, 2015 Sheet 5 of 172 US 9,105,078 B2

60~ 14 12¢ 12b

g, I>14
~ S

US 9,105,078 B2

Sheet 6 of 172

Aug. 11, 2015

U.S. Patent

9t
/

Jd3a0314d
/ 430Q00N3

811

AY1dSId

== —=n

8¢

CE

acl

)
001

- AMLINOYID DNISSIOONd IOV
-edeeny D907
i T04INOD mmﬁ
mm v 501~ ve (SIOSN3S
i . (STISNIT
JOVAIING | L 01507 L3 mo\é__ :
ONI-YOVE dS| INISSIO0Hd Jdld dS| 40SN3S 771 of (uanvo) 88
08— 96 1 (S)301A3A HNIDYAI
; 3
201 " X
S B 21507 :
ol vol 81135440 ONY 338 m
(YWQ) AYOWIN FUNLOId .
86

U.S. Patent Aug. 11, 2015 Sheet 7 of 172 US 9,105,078 B2
90b 94b\ 1303 f90a
SENSOR 1 SENSOR SENSORF—{SENSTR 0
I/F1 T/F 0
N— 04
ngj() (50) a (80
(0L} (D2) STATS PIPE 0
| 1422 1442 1462
{ s
(2) STATS IMAGE PROCESSING LOGIC}> STATS CORE
_-140b
(03) STATS PIPE 1
142b _144b iy
- |
153 ﬁqsmg TGE PROCESONG Loaich{ oo CORE
150
PICTURE - 1) RAW PROC
MEMORY 0 152 154
(DHA) OFFSET 4
” e RAW IMAGE PROCESSING LOGIC }]
160
(D5 RGB PROC
162 f164
55 RGB IMAGE PROCESSING LOGIC I]
170
D) YCC PROC
172 f174
) YCC IMAGE PROCESSING LOGIC ;l‘l
82/
Y
0 07) —180 192
Y 182 g [
¢ _ (10 REGISTERS |
57) BackEnd) ISP PIPE PROCESSING
LOGIC
oo FIG 8 | CONTROL UNIT 190

U.S. Patent Aug. 11, 2015

Sheet 8 of 172

US 9,105,078 B2

DESTINATION PROCESSING UNIT(S) TARGETED
BY SOURCE ENTER AN IDLE STATE

DESTINATION PROCESS]

PROGRAMMABLE PARAMETERS FOR EACH

NG UNIT ARE UPDATED

TRIGGERING EVENT
PROCESSING U

PLACES DESTINATION
NITS TARGETED

BY SOURCE INTO RUN STATE

~—206

EACH DESTINATION PROCESSING UNIT
TARGETED BY SOURCE COMPLETES PROCESSING
QPERATIONS FOR A CURRENT FRAME

~—208

FIG. 9

. Faten Aug. 11, 2015 Sheet 9 of 172 L1109,
U.S. Patent US 9,105,078 B2
210 212
\ \
BANKO DATA REGISTERS BANKL DATA REGISTERS
510a-—A__ REG.1 | L_REG.1 K {19,
210bd—~__ REG.2 | L_REG.2 KN |op9p
510c—1__ REG.3 | L_REG3 k1o
® @
® @
® @
210dd—A___REG.n] L_REG.n K o104
214 220
\ \
GO REGISTER A CURRENT REGISTER
9161 NextDestVld | H L_CurrDestVid || 509
218——/I NextDestBk |} H { CurrDestBk [__224
219 4 NextSrcBk | | CurSrcBk ~ 925

FIG. 10

U.S. Patent Aug. 11, 2015 Sheet 10 of 172 US 9,105,078 B2

TRIGGER ON FRAME COMPLETED

FIG. 11 230 1

236
VVALID 7_P_—T——__-J—[

228 seT ol 7

232

(VBLANK)
e

234

TRIGGER ON 'GO’

FIG. 12

230

236
\ p
VVALID 7—P—_~\—

228 SET 'GO’

234 232

TRIGGER ON RISING VSYNC, MISSED "GO’
230

FIG. 13

VVALID

236

228 SET’GO¢

234 232

US 9,105,078 B2

Sheet 11 of 172

Aug. 11, 2015

U.S. Patent

G1 9l

027 jnmmm Nvmm \lNNN
. _V\A Hgausuny [/ / /) saseauny [/ / /1 PINseaung [/ / /)

1 ¢ L8 a1 91 6102 L 8¢ 1€

/AN E

8EZ —61¢ 812 912
Ve \ [[[
N { 09 | agaisyeN [/ / /] waiseqxeN [// /] PINSsQ¥eN [/ / /]

o 1 ¢ L8 G191 610¢ LC8C &

U.S. Patent Aug. 11, 2015 Sheet 12 of 172 US 9,105,078 B2

240
| SENSORO BEGINS ACQUIRING IMAGE FRAMES K_ 1

PROGRAM CORRESPONDING GO-REGISTER
TO SET NextDestVid
AND NextDestBk BASED ON NEXT FRAME

244 —"

246

TRIGGERING
EVENT OCCURS
?

NO

YES

SEND CURRENT FRAME TO ISP PIPE BLOCK
FOR PROCESSING BASED ON DATA REGISTER
248 — CORRESPONDING TO ISP PIPE BLOCK
FROM BANK AS INDICATED BY NextDestBk

_/] COMPLETE PROCESSING OF CURRENT FRAME |—

FIG. 16

250

U.S. Patent

Aug. 11, 2015 Sheet 13 of 172

254 —

SENSORO AND SENSOR1 BOTH
BEGIN ACQUIRING IMAGE FRAMES

256—"

WRITE FRAMES FROM SENSORO AND
SENSORI TO MEMORY (SifODMA /SiflIDMA)

READ SENSORO AND SENSORI FRAMES FROM
MEMORY IN AN ALTERNATING MANNER BASED
ON FRAME RATE OF SENSORO AND SENSORI

GET NEXT FRAME AND DETERMINE IF NEXT
FRAME IS FROM SENSORO OR SENSOR1

US 9,105,078 B2

PROGRAM CORRESPONDING GO-REGISTER
TO SET NextDestVid
AND NextDestBk BASED ON NEXT FRAME

264

TRIGGERING

EVENT OCCURS
?

NO

266—"

SEND CURRENT FRAME TO ISP PIPE BLOCK
FOR PROCESSING BASED ON DATA REGISTER
CORRESPONDING TO ISP PIPE BLOCK
FROM BANK AS INDICATED BY NextDestBk

268_/i COMPLETE PROCESSING OF CURRENT FRAME |—

FIG. 17

U.S. Patent

Aug. 11, 2015 Sheet 14 of 172

US 9,105,078 B2

l GET NEXT FRAME FROM SOURCE

Y

CONFIGURE DESTINATION IN

GO REGISTER CORRESPONDING TO SOURCE

¥

PROGRAM NextDestBk FIELD

OF THE GO REGISTER

278

TRIGGERING
EVENT OCCURS
?

SEND CURRENT FRAME TO NextDestVid
DESTINATIONS AND PROCESS
USING NextDestBk REGISTERS

FIG. 18

¥

COMPLETE PROCESSING OF CURRENT FRAME
BY DESTINATIONS TARGETED BY SOURCE

DESTINATION

CHANGE

SET NextDestVid TO 0 FOR ALL
SOURCES AND TRIGGER

N—286

288

ALL ISP

PIPE DESTINATIONS

IDLE
!

290

YES CONTINUE

PROCESSING
?

NO

294

END IMAGE PROCESSING

}\—292 -

U.S. Patent Aug. 11, 2015 Sheet 15 of 172 US 9,105,078 B2

SENSORO ACTIVE AND SENDING FRAMES
TO ISP PIPE BLOCK(S) ~—298

300

DETECT FOR
SENSORL ACTIVE ON
NEXT FRAME TO SEND
DATA TO ISP PIPE
BLOCKS

NO

CLEAR GO REGISTERS AND RECONFIGURED
NextDestVld FOR ALL SOURCES

(

294

SENSORO STOPS SENDING SENSORT GOES ACTIVE

FRAMES TO RAWProc BUT 304—| AND SENDS DATA TO
CONTINUES TO SEND 302 RAWProc
FRAMES TO STATSPIPEL

FIG. 19

U.S. Patent Aug. 11, 2015 Sheet 16 of 172 US 9,105,078 B2

[n-1]
[2n-1]

LINEAR ADRESSING
STRIDE=n BLOCKS
FIG. 20

[3]
[n+3]

(2]

In+2]

[1]
fn+1]

0
{nl

US 9,105,078 B2

Sheet 17 of 172

Aug. 11, 2015

U.S. Patent

91E | |vet

NOID3d 3JAILOY

3
gz¢ | 8I€

1

8ZE~

JAVdd Mvd

02E~

JANVYH4 HOSNIS

US 9,105,078 B2

Sheet 18 of 172

Aug. 11, 2015

U.S. Patent

¢¢ Ol
“ Z/1/ 0 3014181543 “
e Z1SAIAILY ——fe——T1SAIAILIY 0LSAIAILIY ——]
/ 9%
%% 9%
/1 77—
cee—"11, e
4% 4%
Z3dIMLS ““ 134141 “\ 03dI41S
11 4%
% 4%
% 4%
%% 4%
A4 /)
fe—— ZHLAIMOYS —>] s e f«—— OHLQIMOYS —]
g% v
fe——— THLQIMDYS ——>

| 2/ 1/ 0 3AIMLS0S “

US 9,105,078 B2

Sheet 19 of 172

Aug. 11, 2015

U.S. Patent

dVMS 31A4

W\ Y A

9t
dvMS MH

ﬂ\ P B

vveE
dYMS OM

e

e

dYMS Md

W « ~ L.

0123

dYMS ON
«0000.

ﬂi 44003

8EE dyMmS

£¢ Ol

()]

P~

[}

[sp)

i

vt | 91 | ¢1 | €T | O 1 8 6 9 14 G ¢ £ 0 1
¢l el 74} Gl 8 6 01 11 1 9 L 0 1 ¢ £
— —

8 6 01 It ¢l €l 14! a1 0 ¢ € 1 g 9 L
VIA
0 1 ¢ € 1% G 9 / 8 01 I Al £l 14! a1

US 9,105,078 B2

Sheet 20 of 172

Aug. 11, 2015

U.S. Patent

1HOI3H

|« (7=)3014LS -
| HLAIM |
o €9 . T Q9 [o D09 T
bk 65 ______. N 8S .. o LS . 98
T 6 o G Vo T - [S < B
A IR - o O o Sy R A “
. A2 o o . o] S 4. IR A i
o 2 G ey [200 I I A ;
Lo 68 _1____ L 8¢ _______ | Le 1 . L9 k
Lo € ... I ve . | S N I S M
G S e 0f _______ e 6¢ 4 _____ v _..8¢]
G X200 N e 9 | 120 N I
oS T2 R ¢ [[EA o0 2
o] 6l 1 ____ E | S o ARE I S I
L G = — — & <~ I A — —— AL3S440
. 0o R [- N o 8 . :
o Lo . o 9 T T o v I
S T A P R L 0. Y
obe s, N ygavasve
ay9=
¥135440 ¥907g T

US 9,105,078 B2

Sheet 21 of 172

Aug. 11, 2015

U.S. Patent

9¢ 9l
[2:6]€1d [2:6]71d [2:6151d [0: 112140 TIE 140 TIv1dfl0 TS Td
[2:6101d [Z:6111d [0'1)8d| (01164 Jl0:TI0Td][0 TIT 4 [Z:6121d
[2:6]/d [0:Tvd |[0°TIGd | 10°TI9d | [0°T4d [7:6184 [2:616d
[0'T10d } [0°T11d | [0'102d | [0'TIEd [2'61vd [z'61Gd [7:619d
[7:610d [2'6]1d [Z:6]¢d [7:6]d
oltizie|ris|ots|sl6lo|tizlelv|s|ols|slelo|t|z|e|r|c|olL]|s]6]0]|T
olojofolojojotojojoftryrfrfr|r|t|r|t|tfe|e|ele|e|e|elelzizlele
TAI =
[0°61]0d [0°GT]1d 9IMVY
[0:£110d V//] [0:€T11d V//| 7IMYY
[0:1T10d v/ //// [0 11114 v///// 2Imwyd
[0:610d A [06]1d VA O
[0:£10d [0:/11d [0:/12d [0:/1€d SMYY
O|T{e|elw|q|9]L]8|6|0fT|z|e|r|S|9|L18|6(011|2|E]v|S|2{41816]100L] Lumuog
olojojojojofofofoloftt|t|t|tit|r|ritit|ziz|e|eiciz|ziziz|z]|c|e

Uv0
yeo
4co
410
4oo

US 9,105,078 B2

Sheet 22 of 172

Aug. 11, 2015

U.S. Patent

8¢ Ol
[9:€TI51d [0°6121d [0:61¢1d [0°6}y1d [0°6]61d
elotd] [0'G)TId [9:€T)Z1d [9:€TIETd _ [9°€TI71d
[9:€T101d [9:€TITTd [0:6184 | [0:6)64 | lo€lotd
[zgled | [0:19d | [0:6]/d [9:€T18d [9:€1]6d
[9:£116d _ [9:€119d [9:€11/d [0°G1d H0'T1Gd
[0:610d EE _ [0:612d [0:61Ed [9:€Tl¥d
[9:€T10d [9:¢T)1d [9:€1]2d [9:€T)ed
oltlzielv|siolL|s|6lo|t|zlelv|s|ols|8l6lo|Tizle|v|{c|olL|8]|6|0]|T
olojojolojojofojofojtft|tfr|ryt|r|t{ritiz|zizlielz|z|zlz|ele|c]e
[Ol
[0:€]td [0:€]5d [¥1119d [7:1114d [0:€194 [0:€1/d
[11led [0¢led | [0'€led [11ltd [¥'1116d
[#:1110d [1111d [0:£10d [0:€11d [y:1112d
oltlzielr|siols|slelo|t|elelvis|ols|sl6lo|t|zle|v|GlolL|8]6]0]|1
olojofolojofolojojofrjt|rfr|rirfr|r|tytrielziziz|cizizie|z|z|e]|e

40
4so
up0
yeo
4eo
yto
4oo

Yco
1o
400

U.S. Patent Aug. 11, 2015 Sheet 23 of 172 US 9,105,078 B2

<O OO
O e O =
o]
O N IR O N
O <t O <k
O O
O W OWw
O
O~ 5] [I
OO O o0
OO les Ne))
— O — O
g el e 08“’
— — O (&) (]
O
— o e 1 T}
o <} - =f
—i LY ol L)
— O 0
=i [~ — P
—
i 00 | 0 i OO
—t O — N ol
(Sl ol Fa'd
N O N O
[N AN v
NN NN
NELoN oy
(€3]
o < N <
N OO
WO W
N~ o~
o (@) o~ 0 O
IS\Ee il b N ooy 30
= & ™o S

00h
00h
01h
02h

U.S. Patent Aug. 11, 2015 Sheet 24 of 172 US 9,105,078 B2

OO OO
O O
O N — O N
o = — =
i S oMl @ &
O < — O <t o —
% s} oM o0
O o O
[en iXe) OO
O~ O~
O CO 00
(v Re)] e Xe)
o . 1 O
)) — oy
e~ O\J ' = \] < —
COD (& 1G] &)
—) — {0
i LY e (3
— D D
— [~ e I~
i 0 — — OO —
= o ~ =
— o} O ~ O o0 o'e}
NO i AN —
g o< g o
N e N e
[aNE QN [N IR QN
NN N
o = o~ <
W0 ~nw] X =
Q| o o | =
N~ T NG o~ L
~Nool o — —i &N 00 QN
L b o) S=T0= o
[==l I~ °
™ L o= 2SS |ES| L
s = s =
O O S)

U.S. Patent Aug. 11, 2015 Sheet 25 of 172 US 9,105,078 B2

OO

[an oy

O N

O

O <

BO {9:2]
Bl [9:2]

[eRie}

OO

O~

OO

OO

— O

L B |

— N

Gl [9:2]

GO [9:2]

i 0

— <t

1 LD

i O

1 P~

~i OO

i N

[9:2]

N O

RO [9:2]

R1

N vt

NN

N O

N <F

El
{1:0]

EO
{1.0]

G

N WO

BO
[1:0]
Bl
[1:01

N P~

N O

[1:0]
Gl

[1:0]

FIG. 33

GO

NOY

O

R1
{1:0]

RO
[1:0]

Y vt

OOh
0lh

U.S. Patent Aug. 11, 2015 Sheet 26 of 172 US 9,105,078 B2

OO OO
O [
O N O
[en e p] [enTEep]
O < O <3
leaRiel O o
OO OO
-
et = el = ——8=2l5]=
OO OO
— O — O
] i = =]
1 O\ 1 0
—i —
=5 Ell]]] 3
i 1 . o .
— O b — 0 S
— L — L
i OO 1
— N — N
ND NO
O —™ N 1
OO N O
~< [P NETE ©
N LY [QV Ko
AN O AN WO
[QV N [Q VIR N
™ 0O N OO
O N O
O O
O ¥y —

00h
01h
02h
03h
00h
01h
0Z2h
03h

U.S. Patent Aug. 11, 2015 Sheet 27 of 172 US 9,105,078 B2

w3 2) g
o) ™
Ll Lt
Z|o© Z|oo Sloo Hlco
<T < i 5
- -
il [] & O ot o € et = &5 e
éﬁ [N oN| % o <§£ O N <§E O N
f
= < o o @)
OO O N O W O W
S0 oW < O W0 o w
o~ o~ S| ex o~
< 0 lw)ee] Li. O O o
oo oo oo ‘e Nep
— — O —1 D olay kR el FoN
> 8IS
i i —_ -1 =i Olody D B | i i
|- X
— O\ > 1 O\ (SR RS
—i O\l i O\
— V) — (Y i () i (N
— <t — < — <t — <t
—i — 1 i 1 v~ 3
— 0 — O = O i O
— I~ = —1 ™~ — I~
— 0 =1 00 — Q0 — Q0
~o | N |L© N N O
[N et O\ e O v
oo oo oy ol NN
laN ey oo oo N
o<t o<t o <t N o<
N O [QVETe! oD oD
O O KO N WO oo NW oo
0 QO
™~
2l EoE8 e | e —
o
o 00 o o) o o 0O
oL laVEe)) [l o O N
QO o oo o O
oy —i o) —i CF) o ¢ e
s S s 5 5 5 S S
o O o O S O &S O

U.S. Patent Aug. 11, 2015 Sheet 28 of 172 US 9,105,078 B2

oo oo
O — —

© N oo

O™ | oo

o< |7|” o<

O o o

oW S

O~ & I~

o0 = o0

Lo oo,

— Z2lo o vl
—ey | OO R

— —t)

i 00 — OO

i N —lon —

e 1> ~NO

N o

NN o O

o oy N

N < oSt

oL O

N NLO_%Q%E
N~ ol N~ OO
~oo | o~ 00

N ~ o

no o

0y v oy et

00h
0lh
0Ch
01h
02h
03h

U.S. Patent Aug. 11, 2015 Sheet 29 of 172 US 9,105,078 B2

360 \

361
RECEIVE IMAGE DATA IN UNSIGNED FORMAT V-

CONVERT TO SIGNED FORMAT AND ——362
SCALE AND /OR OFFSET IMAGE DATA

PERFORM IMAGE PROCESSING ON ——363
SIGNED IMAGE DATA

SCALE AND /OR OFFSET IMAGE DATA AND |—364
CONVERT BACK TO UNSIGNED FORMAT

FIG. 40

U.S. Patent Aug. 11, 2015 Sheet 30 of 172 US 9,105,078 B2

PIXELS SCALED TO 16 BITS:

| 16 BITS |

RAWS /PACKED RAWS
P[7:0] P[7:0]

\

365
RAWIO /PACKED RAWIO
P[9:0] P[9:4]

RAW12 /PACKED RAW1Z
P{11:0] P[11:8]

RAW14 /PACKED RAWI14
P{13:0] PI13:12]

RAW16 /PACKED RAWI16

AT

P[15:0]

FIG. 41

369

U.S. Patent Aug. 11, 2015 Sheet 31 of 172 US 9,105,078 B2

RECEIVE INPUT PIXELS

| 372

CONVERT RAWSE, RAWI0, RAW12, RAW14, RGB 565, OR
RGB 888 TO UNSIGNED 16-BIT FORMAT

f373
APPLY PROGRAMMABLE SCALE AND OFFSET

374
RIGHT-SHIFT PIXEL BY SCALE VALUE

375
SUBTRACT 16-BIT OFFSET VALUE FROM PIXEL

376

USE RESULTING 17-BIT SIGNED PIXEL VALUE FOR
IMAGE PROCESSING

FIG. 42

US 9,105,078 B2

Sheet 32 0f 172

Aug. 11, 2015

U.S. Patent

occ¢ Ol

selgoisz- selgoiRz+ NIy X¢

LNdN
Ya

- 9607 -

YiNad

8cry

L9EY19

9¢vs

(€999

1nd1no - IndLNG
UEDM

(NIY9

9607

R
ZA

-9Er19

ST

SeIgola7- seIgoisy +
31901 SANIT
NS/ 3dd ANS/ 3dd

X2) (135240 #201) (MG-+1)

J1g 1NdNI

e
e

r 870¢--

~

cehy

7201~

0l

¢LOt
T#m
566l

9175
64T

0cvy Pivs

0GESl £950]

-8140€

rGE859-

B

0

AN 2

01vG
- GECLY

€v Ol

VNG 0L ¥1¥d TIXd
aN3S OL 1XId 40 SLIG ¥3ddn 35N

188~

57 OLNI @SW 3L¥0Id3Y

9ge—~

INTYA 3TV0S A8 13XId L4IKS-L43T

g~

JONYY 118-9T QINBISNR OL dIMD

pge~’

13XId 0L INTVA 135440 11891 Qay

cge—’
135440 ONY TT¥0S TIGVAWYHD0Nd ATddy

728e~"

STaXId 118-LT QINDIS FAIZ0H

18~

omm\

US 9,105,078 B2

Sheet 33 0of 172

Aug. 11, 2015

U.S. Patent

AYLINOYID BNISSIV0Yd IDVII oy
Ji
2 -8
SRENSBEN
04l —z¢
90V +——~J(ST9IINNOD S0v
807 — JOp—. MOT44IA0)
91907 TOHINOD
Qomm gﬂm
(19)
EREITE
D190 THOSNIS THOSNIS
4139 HNISSIO0N 05)
3did dS ERERRINEN
HOSNIS 04OSNIS
7 7 ((
(YWQ) (VNQ) BOET £06
98 08 OUHIS TuS
/T~ —0/1
00T— (VWQ) AYOW3W (€S) (@S)

U.S. Patent

Aug. 11, 2015

Sheet 34 of 172

US 9,105,078 B2

READ IN PIXEL DATA FOR
CURRENT FRAME FROM MEMORY
TO ISP FRONT-END

~—412

NO _~"OVERFLOW

DETECTED
? 414

YES

STOP READING IN PIXEL
DATA OF CURRENT FRAME
FROM MEMORY

~—~416

OVERFLOW
DETECTED
4 418

YES

RESUME READING IN PIXEL
DATA FOR CURRENT FRAME

~—420

FIG. 45

U.S. Patent Aug. 11, 2015 Sheet 35 of 172 US 9,105,078 B2
430
READ IN PIXEL
DATA FOR CURRENT
FRAME FROM SENSOR {432
TO ISP FRONT-END
OVERFLOW
DETECTED
? 434
YES
DROP NEXT
INCOMING PIXEL f—43g
OF CURRENT FRAME
4;12 4}50
INCREMENT DROP PIXEL OF
DROPPED NEXT AND o

PIXEL COUNTER

A

NO

OVERFLOW

RECOVERY
? 440

YES

SUBSEQUENT FRAMES

OVERFLOW
RECOVERY
?

. 452
YES

444 —

REPLACE DROPPED
PIXELS WITH
UNDEFINED PIXEL
VALUES

REPLACE DROPPED
PIXELS OF FRAME IN
WHICH OVERFLOW
FIRST OCCURED
WITH UNDEFINED

PIXEL VALUES

446

RESUME DOWNSTREAM
IMAGE PROCESSING

)

454

FIG. 46

US 9,105,078 B2

U.S. Patent Aug. 11, 2015 Sheet 36 of 172
w460
READ IN PIXEL h—g30
DATA FOR CURRENT
FRAME FROM SENSOR
TO ISP FRONT-END
OVERFLOW
DETECTED
? 434
YES
DROP NEXT
INCOMING PIXEL h—s35
OF CURRENT FRAME 462
442),
) CLEARED DROPPED
PIXEL COUNTER, CLEAR
'%%%EPMP?[\')T SENSOR INPUT QUEUE,
PIXEL COUNTER SIGNAL TO CONTROL
LOGIC TO DROP
CURRENT FRAME,

PREPARE TO RECEIVE
NEXT FRAME (WHICH
BECOMES NEW
CURRENT FRAME)

OVERFLOW
RECOVERY
?

NO

440

YES

REPLACE DROPPED
PIXELS WITH
4441 |UNDEFINED PIXEL

VALUES

RESUME DOWNSTREAM
446—1 |MAGE PROCESSING

FIG. 47

US 9,105,078 B2

Sheet 37 of 172

Aug. 11, 2015

U.S. Patent

00T —~

SHI01d v | gav 3 w¢ BIE
SOILSILYLS 00T} 1907 ONIMOVAL
INISS3004d Ol 13XId q3ddIT0
98t WYHOOLSIH 3
08t
287 1 | SOILSILVLS Nad - Emﬁmmmﬁum
\ IH0D SLVLS ETREEE N
ﬂ,# (1St eoyt [1S ¥/¥
MY MYY
av6
zo_:@owﬁ_w_\/_oo (78) N
NOILYSNIdINOD
TIATT Movg 15037 Y1 (18)
ISHIANI - 1 4/1
1S} s/ st Sy HOSN3S
AYY MYY
s NITS) o&m\m
NOILOTYNOD = NOILYZISYINIT fam JOSNES
ONIQYHS SN3T| 4T S ¥OSNIS LTS 3
. MY >><mae o
0 0078 SOILSILYLS
EN_S. oy
(VINQ) AMOWIW 3¥NLOId (£9)(2S)

U.S. Patent Aug. 11, 2015 Sheet 38 of 172 US 9,105,078 B2

470
\
RAW SENSOR LINEARIZATION (SLIN) RAW
S 17 INPUT PIXEL OUTPUT S 17
A OFFSET A LOOKUP A OFFSET 5\08
490 492 506 404
496a— SLIN LOOKUP TABLES —496b
SLIN BANK 0 SLIN BANK 1
GriuT I R Lot GrLUT | R LUT
498a— 500a—" 498b—/ 500b—/
B LUT | {Gh LuT B LUT |[aGb LUT
f f f f
5022 504a 502b 504 F1G. 49
4963~
5 4982 HV BANK O 5002
([ar ENTRY 0 ar ENTRY 0
Gr ENTRY 1 R ENTRY 1
512 < : 514 <
| [6r ENTRY 286 _LR ENTRY 256
15 y, 902 g 15 y, 904 g
(RE ENTRY 0 ([Gb ENTRY 0
B ENTRY 1 Gb ENTRY 1
516~< : 518 <
RE ENTRY 256 _[Gb ENTRY 286

FIG. 50

U.S. Patent Aug. 11, 2015 Sheet 39 of 172 US 9,105,078 B2

RECEIVE INPUT PIXEL 522

APPLY INPUT OFFSET ~— 524

RETRIEVE NEW PIXEL VALUE i
FROM LOOKUP TABLE [—526

APPLY OUTPUT OFFSET ~—5og

OUTPUT LINEARIZED PIXEL (530

FIG. 51

U.S. Patent Aug. 11, 2015 Sheet 40 of 172 US 9,105,078 B2

540 e
BT e [re]e:

LEFT EDGE (N=3)

M~ Pl o1 p [p2]p3
LEFT EDGE+1 (N=4)

M~ Ipolr| P [r2|r3

CENTER (N=5)

85 Tpo| p1| p | P2 [F3]

560\ RIGHT EDGE-1 (N=4)
RECEIVE CURRENT PIXEL “

AND IDENTIFY A SET OF RIGHT EDGE (N=3)
NEIGHBOR PIXELS 562 FIG. 52

WITHIN IMAGING FRAME

\
CALCULATE PIXEL-TO-PIXEL
GRADIENTS WITH RESPECT k_s¢4
TO EACH NEIGHBOR PIXEL

A
DETERMINE THE NUMBER
(C) OF GRADIENTS k_sg6
BELOW dprTh

C<=

dprMaxC O
?
5{? YES
IDENTIFY CURRENT PIXEL IDENTIFY CURRENT PIXEL
AS DEFECTIVE AS NON-DEFECTIVE 574

3
CORRECT DEFECTIVE

PIXEL USING s FIG. 53

REPLACEMENT VALUE

U.S. Patent Aug. 11, 2015 Sheet 41 of 172 US 9,105,078 B2

INTENSITY

400

US 9,105,078 B2

Sheet 42 of 172

Aug. 11, 2015

U.S. Patent

R
S

0o

SRR
3

5
R

%
%
S

2 o
t“awwwmwmv
S

=

U.S. Patent Aug. 11, 2015 Sheet 43 of 172 US 9,105,078 B2

< GAIN
O PIXEL

~ 602 590
606 T, 595 e
600 /
\2\ A A A A A A S
I FY Y 2 \Ve YTTTY $ S
\ N A A N A N P
604i'< 24 Y % N Y "% O
5981 /
_<\ N A A (A A A >
7 \ \V A N Y ¢ \
rA
7 59?
<> A N / A A A >
d Y Y \/’)\'7?)(7'("‘?\';‘(’\7(‘/‘)6 b
(3PP AN FAN AT TAS YAV M AN VAN FAN S AN RN 7] | 588
I D NN
pYZAN FAAX M AR FAN F AN VAN VAN F AR F AN F AN » AN ¥
B ODeSDOODPY q
~ OO OO O OO BBODE 1<
(Y Y P Y SE BB DD H |V
!’\/\f\(\f\f\f\f\f\f\/\f\l
[NTAS VAN P AN FAN VAN P AN M AN FAN Y AN VAN ANV |
()()()"()OC)"C()OQ;
_<\ AN />__ _<\P\f\ r\)(f\f\r\)(r\f\r\/ />_
7 $ N RO AP AWK A4 4
-5 N PN N PN N A\ />
7 1% </ v v g $ \
_<> e A V4N raN N N Vg
N b Y N \>
1]] 1 H] 1
i
|

610 3

FIG. 56

U.S. Patent Aug. 11, 2015 Sheet 44 of 172 US 9,105,078 B2

i X 1
GO Gl
—— ® ®
ji
J
- i G
Y
e ® ®
G2 63

FIG. 57

U.S. Patent

Aug. 11, 2015

RECEIVE CURRENT PIXEL AND
DETERMINE PIXEL LOCATION
RELATIVE TO LSC REGION

616

IS CURRENT PIXEL
LOCATION IN LSC

REGION
?

620

IS CURRENT PIXEL
LOCATION A GRID

POINT
?

US 9,105,078 B2

Sheet 45 of 172
Ve 612
N— 614
618
J
DO NOT CHANGE
PIXEL VALUE

(NO GAIN APPLIED)

622

)

APPLY GAIN
CORRESPONDING TO
THE GRID POINT

INTERPOLATE GAIN BASED
ON BORDERING GRID POINTS
(GO, GI, G2, G3)

N~ 624

APPLY INTERPOLATED
GAIN TO CURRENT
PIXEL LOCATION

N~ 626

FIG. 58

US 9,105,078 B2

Sheet 46 of 172

Aug. 11, 2015

U.S. Patent

o gon o e s

g———

1
i
1
{
i
1
i
1
1
3
1
i
1
i
!

U.S. Patent Aug. 11, 2015 Sheet 47 of 172 US 9,105,078 B2

FIG. 60

U.S. Patent Aug. 11, 2015 Sheet 48 of 172 US 9,105,078 B2
592
= /588
G _\ (XG I yG)
R
L — 594 »—C 760
\

FIG. 6l

U.S. Patent Aug. 11, 2015 Sheet 49 of 172 US 9,105,078 B2

RECEIVE CURRENT PIXEL
AND DETERMINE PIXEL
LOCATION RELATIVE TO [N-636

LSC REGION

640

J

DO NOT CHANGE
PIXEL VALUE (NO
GAIN APPLIED)

IS CURRENT
PIXEL LOCATION IN

642 LSC REGION
?

J

OBTAIN IMAGE
CENTER DATA

YES

IS CURRENT

PIXEL LOCATION A

GRID POINT
?

DETERMINE YES
DISTANCE (R}

BETWEEN CURRENT

646
PIXEL AND 654 -
IMAGE CENTER NO ’)
DETERMINE INTERPOLATED
DETERMINE GAIN COMPONENT BASED ON| | DETERMINE GAIN
RADIAL GAIN BORDERING GRID POINTS CORRESPONDING
COMPONENT (GO, G1, G2, G3) TO GRID POINT
[
648 DETERMINE TOTAL GAIN

(RADIAL +INTERPOLATED)
OR (RADIAL+GRID) N—650

\

APPLY TOTAL GAIN
TO CURRENT PIXEL N— 656

FIG. 62

U.S. Patent Aug. 11, 2015 Sheet 50 of 172 US 9,105,078 B2

7(90 Cr
(\7—)_ - |\ 3
A \ ' \ :
%5 0 :
%% 5 :
T N v’ N :
29 P :
v, X /”" :
(/I) AY 1 /\\— : C2
——————————————— D Gl BEnEEEEEEEEEETE EEE W o7
\\: /\>\ ! Cb
L s :
: Rigi<. P
. Ty, GH
j W’E@TCOAO\\ 5792
7 i /PE/L\’/) :\(-
AWHITE AREA | S :
----------------- %----____________________1:___ C2_max

Cl_min Cl_max

COLOR CORRECTION

TEMPI RED | GO | Gl |BLUE

PROFILE:
LOW TEMP: (H %) 12300f 1 }1.07]1.06]1.86
MID /Low: (A 13} |2856{1.021 1 1 1159
MID TEMP: (D50 72) {5000 1.371 1 1 11.23
MID /HIGH: (D65 73] |6500f 1.5 | 1 1 11.08
HIGH TEMP: [D75 1%) | 7500{1.55}1 1 1 11.02

n
G
@)
>

US 9,105,078 B2

Sheet 51 of 172

Aug. 11, 2015

U.S. Patent

—8/8 -
285l oSS 4) SOILSILYLS SNO04-OLAY —
1) InAwed
o,/5 | VRGN T TWHE0LSTH 7 918
T ININOJN0D € NS fmm
(MOGNIM T} WYYDO0LSIH JESUIEDYS aIS
g o | poes |
698~ NS MOY YA Sy [T ¢OloALed ! %Mm_.m_z%m N
i &c8 | T N1
loly i
” LA ——4- V18
+ [T0ISNYHL |
LavanD exe [ET8
A B
21907 [fmwive) 1)
(SMOANIM)|y a1 NOILYTNINNOOY Lvanmtion N 118
S1Y1S SIYIS TIIL NOILIONOD JESUNADS 4 1
MOGNIM ; L——1-018
: [WH0ISNYAL | |
798 7S] m JYANIT mxw.,m &Q
mom.\l €6l
608 | MIonan J
P KTVORIRENE] o'~] DA STEE (81 b Jaoy winve
908
L18 ~ Agooz_b\%wozm\wwo._.wf m_._.mmnﬁ VAL 218 éqlnp
N 919 Zn19used — .
28y
o~ g 108 618—"" ol ; 59 Ol

U.S. Patent Aug. 11, 2015 Sheet 52 of 172 US 9,105,078 B2

798 799 798 799

802 803 804

:>

800 801
FIG. 66
Cr
63
31 Cb
FIG. 67
0

U.S. Patent Aug. 11, 2015 Sheet 53 of 172 US 9,105,078 B2

822 €2
65535 /

Cl_OFFSET=0
Cl SCALE=256 57088 ==----"1
C2_OFFSET=48896
C2_SCALE=512 48896 ----~---

Cl

FIG. 68

0 16384 65535

US 9,105,078 B2

Sheet 54 of 172

Aug. 11, 2015

U.S. Patent

09 Ol

VINNOD Winsgy
Geg 1 YWNST) WnsQd

{ XBUIA> A= > UIWA

EINNQOD guwnsgy

ﬁww.\, EWNSTY £WINSQD

¢INNQD cwnsgyd
peg A ZWNSID ZUWNSO)

T TINNOO TWnsg)
Nm,w..c\ TUWINSTO TWNSOD

d org - | TIB7- 918

B ¢ { SV 13XId J._ AWBI~ 018

<] —— 6eg—" 2010718
Wwe— Y Y Y | /28

/4}3333# 200k

€ g9y 718

d oS00 <018

v 158 go4 908

e o =518 _NOIIONOD dx_&éﬂﬂ MBI~ 918

CHR— el hiid 2010718
N Tt e e § ZITIA 928

St Pt gt Pt Pt goys 718

d \ﬁ Jgsul|gnys — 018

B n o | Z NOILIANOD 73XId } AWBIN~QT8

w81 Y YY1 L8 _7 CoTO~- 118
/j\)}\)l.\ﬁ ¢ITOA GZ8

S P Pt Pt Pl goys 718

d JESUNgHHS 018

679 99 ~908

5eg L1 NOILIGNG] T3Xid J\ﬂ AWET~ 918

781 1 ZITO-118
g ¢O10A AS

doys ~ 18

88~ 12aUI|gDYs 018

™~ any <908

U.S. Patent Aug. 11, 2015 Sheet 55 of 172 US 9,105,078 B2

c2
L—845

cL1c2 1y 84 /848 C1 DELTA=(C1 1-C1 0)

, /> 'OFFSET=(C1_DELTA x C2_INTERCEPT)
849 —s
C2_DELTA |
=(C2.1-C2_0)
: cl
(C1.0,C2_0)
651 8528 (011,00 1)
\101_0,02_0) -
852b
852e
853a (€1.2,C2.2)
(C1.4.02_4) !
852d—— 8520
(1 c‘\ (C1.3,C2_3)
853b

FIG. 71

U.S. Patent Aug. 11, 2015 Sheet 56 of 172
c2
(C1.4,C2_4)
(C1.0,C2_0) P —854b
8542 / /‘7»(01_5,@2_5)
8553
e 7—856h
(C1.3,C2_3) el)
gre (11,021
Cl
(C1.7,02_7) < \CL,C2)
555
(C1.2,C2_2)
(C1.6,C2_6) 856a
o)
i : .
=] i
— ' 1
X I 1
s |/
o ! 1
an} 1 1
ty B t

FIG. 73

US 9,105,078 B2

US 9,105,078 B2

Sheet 57 of 172

Aug. 11, 2015

U.S. Patent

{SMOANIM 9T)
14'04'Mokeq WNS 3903
‘T4'04'AWed WNS 3903

‘SWNS 3903 '9'9'Y

84

§G8G 2685

e
| [@59 93ive 03q] \ [ILvWIDid !
cogc T INO SYILT £x¢ 994 ¥IAYE m
! JVELES WH0ISNVIL D& ||
168G — T |NO_sy3Ll mme YINNT 0L ¥3Ave[™]
" \—orgg | !
" ALLIRS 9¥89 “

— ! X { we

0583 m NO Skl £xefTT o ens || Awe)
i
m 90103130 ETRIE "

6486 — 3903 TYLINOZIMOH mmwm 4IAVE

8¥89

gmmr A

US 9,105,078 B2

Sheet 58 of 172

Aug. 11, 2015

U.S. Patent

NOILISOd 7004
£d4
1 940 Gd0 Tdd Zd4 ¥dd £dd 2d0 10
< {]] I i i |]
858
/ AR

G/ Ol

34008
4V

U.S. Patent Aug. 11, 2015 Sheet 59 of 172 US 9,105,078 B2

864

OBTAIN COARSE AF SCORES ALONG
LENGTH OF FOCAL POSITIONS (0-L) ~— 865

IDENTIFY FIRST COARSE AF POSITION
HAVING NEGATIVE CHANGE IN COARSE N— 866
AF SCORE FROM PREVIOUS POSITION

ADJUST FOCAL LENGTH BACK TOWARDS
INITIAL POSITION (0) USING STEP INCREMENTS
AND ANALYZE FINE AF SCORES AT ~— 867
EACH STEP TO LOCATE PEAK

SET PEAK AS OPTIMAL FOCAL
POSITION FOR IMAGE SCENE "~ 868

FIG. /76

U.S. Patent

Aug. 11, 2015 Sheet 60 of 172 US 9,105,078 B2
G| R
—— FIG. 77
R R
G G
Y
R R
G G
FIG. 78
870 90
)
N\ 872
\' .. IMAGE
N /A \ SENSOR
. B G R
.I

FIG. 79

U.S. Patent Aug. 11, 2015 Sheet 61 of 172 US 9,105,078 B2

RECEIVE ORIENTATION OF
FIXED PATTERN NOISE N— 902
STATISTICS ACCUMULATION

DETERMINE COLOR
COMPONENT AND POSITION OF k_ g0,
EACH PIXEL IN_ORIENTATION

ADD PIXEL VALUE OF EACH
PIXEL IN ORIENTATION HAVING
SAME COLOR COMPONENT N_gpg
INTO A SUM ARRAY
FOR COLOR COMPONENT

INDEPENDENT

NO
ACCUMULATION 20

),

STORE SUM ARRAY FOR
EACH COLOR

COMPONENT IN MEMORY
COMBINE SUM ARRAYS FOR
FACH COLOR COMPONENT [>—912

STORE COMBINED SUM
ARRAYS INTO MEMORY ~— 914

FIG. 80

U.S. Patent

Aug. 11, 2015 Sheet 62 of 172 US 9,105,078 B2

DIVIDE INPUT IMAGE INTO
MULTIPLE HORIZONTAL
STRIPS OF EQUAL HEIGHT

CALCULATE FIXED PATTERN
NOISE STATISTICS FOR
EACH HORIZONTAL STRIP

~— 924

STORE PIXEL PATTERN NOISE
STATISTICS FOR EACH
HORIZONTAL STRIP INTO MEMORY

926

FIG. 81

US 9,105,078 B2

Sheet 63 of 172

Aug. 11, 2015

U.S. Patent

V¢8 Ol

/T = Ada
¢/ vI=A Mmﬂm

} 0
| b1
JILASZSE LA AIAL LA A SELELS
A VIAZIVIAYVIATY YVIAVIAXY y
y. 4 AVIAVIAXFY 7z yAriD a4 y. 4
4 Ax AT Y AVIAAVIAY AV 717
4 A2V / AV ALY A X 4 AKX P
AXVIAA T IAF 4 Y VATV IAZ T VALY
AXVIAATYVIAVIAAY AV X PTA Y VIAA T A
AL VAV. 0 4 4 AV A Y /1A K 4 A Y A
\\\ \\\ V. Wi 4 /] A \\\ Vi .\\\ \\\\
VAT VI Z Y X V.0 4 YVIAYIAA XY VIAA V7T
S AVIV.SAAV.BAV.V.0 &'4AVIV.S ATAV.AAV.DaAVIV.D V171 4
A VALY YV AYVIAAY VI VIZIA Y VIAI VAT
4 AV AV t Vi/lA & A ALV AY pd
AVAA T AXYVIZAVIAZ AT VIAAYTA VIZIA
d 4 4 ALYV 4 AV FAAVAV. 4 y AL
p. Y PIATVIAAT YA X VAT VIAA VAT VA
AV AV i AL A ALV ay A .
4 ALY Y. AL A Y A ALY A Y A Y A XV
) 4 AV ALY AV AViAX 4 d AX A
[A 4 AV ALY Y 'V A X A AV A Y
AVIAY AVVIAX VIAVIAAY T VAXAVIAAY y
)4 A V.4 aV A AL AVI/IAVIZIAZX VIAAY
VIAX ALY AV AT AT VIAAY Y VIAX VAR T 717
AVIAY 1Y ' VIZ VA X FRAVID8AVIV.D Y p.
A X VIAAYVIAXVIA Y YVIAA T AT T VIAAY
4
)))
) o Q.
00 00 00 - -
O O O Ju1"sod’j09
Q > >
VO VO VO h‘
> > V EEEEEEEREEE = 000
_ 2371510100 —>
0b/08 =Xdeig B0
< oY

/\omﬁ

U.S. Patent Aug. 11, 2015 Sheet 64 of 172 US 9,105,078 B2

IMAGE IN STRIPS SUM
i
sTRIP 111 {21314]5]6]7]s g
1
5
6
STRIP 2 :
8
stepX=1
stepY=0
<=y IMAGE IN STRIPS SUM
] 5 3 1 T
STRIP 1 5 6 ! 8 %
1
5
6
STRIP 2 7
8
stepX=1/n
stepY =4

FIG. 82C

US 9,105,078 B2

Sheet 65 of 172

Aug. 11, 2015

U.S. Patent

€8 Ol

mcm../..
SWVHDOLSIH
w001

201
NOILVHINGD
WYHOOLSIH V20T

296
o\

STYNEWNHL

vmm\
£6/
L a0y
NEIVE
219071 356~ T
NOILYHINID —~ - ¢
TIYNGNAHL 756 - A
¥G6 Xeul Ul A
& 3ne uIlA
Sm,\ 256

219071
NOILYLNdNOD
JONYNINM

\ 88V

mmm#

046 \

dod d3AvY

US 9,105,078 B2

Sheet 66 of 172

Aug. 11, 2015

U.S. Patent

s >
TONYNINAT TYIXYIA y O
- 3LNdNOD
907 ONY ,/x_“WE A €61
B0 | ONITYOS ‘135440 | UK rb J
v ————HONVNINNT 3073AY T1dINVSNMOA
o e Ne U4 \ 3LNANOI 2¥T |9y HIAVE
256 206" 06—
286
XINT3S
er6—] 1N 78 Ol
XIN
716
301A -
0
'(_ 956 080 TONYNINNT TYAIXYIN| y O
846 / XeW Ul 3LNdNOD
)
; UIA v N HONYNINNT 3DVHIAY T1dNYSNMOQ
ma-:_;w. 3LNdWO0D 2X ¢
) 8 o - NRER G
256 246 0L6

US 9,105,078 B2

Sheet 67 of 172

Aug. 11, 2015

U.S. Patent

/8 9l g
AN q
SIWYHDOLSIH ~ 9
W07 B0 e |
WYHDO0LSIH (1D018) oI
D — T35
W07 = UlIA
996 956, -
l/ ﬁxmg ..c__>
AN SN i B
3718 3718 10T~ zg6
10o014g o101 32019 Y101
WOILYAA WINOZIHOH
\OS
N /]
2007~ XYW < w
(S)TIYNIWAHL 0001~ NI | d
) 866 —1 wia A.Twmm mcw;
96 » 255y eus -c_.__»
966 — ans 766 Tyep o Ul
% ' N 3ne TUIA
21507 DNIMIWYSNMOT N 9% g6
266
HOLOV4 MOLOV4
ONIMdNYSNMOA ;—900T HNITdINYSNMOG M 7001
WOILYIA WINOZIYOH

US 9,105,078 B2

Sheet 68 of 172

Aug. 11, 2015

U.S. Patent

a1

68 9l

[Fllleuquiny L

[Gljleuquiny]

[Z]lieuquiny]

[e]jieuquiny L

[O]]lBUquIny |

[T]jleuquiny]

06 Ol
[0EIUIgISIH|e207 [TEUIGISIHIEI07
[82JuIgiSIH[e07 [6¢1U1G1SIH|2207
[9¢]UIGISIH[E00T] [£ZJVIGISIHIEI0T
[JUIgiSIH[ed0T [GZ]UIgISIHIed0T
[CZIuIgISIHIed0T [€1uIgISIHIe00T
[0Z1UIgISIHI200T [TZ1UIgiSIH|ed07
[8T]UIGISIHIEI0T [6TIUIGISIHIE0T
[9TIUIGISIH|EY0T [£TIUIGISIH|B30T
[FTIUIGISIH|E207 [GTIUIGISIHIBI0T
[CTIUIgISIH|EY07 [ETIUIGISIH[e0T
[OTIUIGISIH[e0T [TT]UIg1SIH[ed07
[B1UIgiSIH[EY0T [6]UlgiSIH|e307
[9]uIgisIH|ea07 [£JUIgISIH[e20T]
[71uIgiSIH[E0T [GUIg3SIH|E307
[C1UIgiSIH[EY0T [£1UlgiSIH[E07
[0]UIgISIHIEY0T [T]ulg3sIH[ed0T

Gl

3

Gl €
[Eljeuquiny | [Gllleuquiny |
[Oljteuquiny L [Tllleuquiny |

Gl €

US 9,105,078 B2

Sheet 69 of 172

Aug. 11, 2015

U.S. Patent

g6 a

HOSNIS

091
/
(00NdaDH O
mw_w_w (051 %“m_x\% (H) (1058)
o NOILDIEYGO PG AN TN
s ONIQHHS SN3T i LHOHOIH Y
A\ zeor —pe01 \—9¢01 - ge01 —ot01
SeT
~ 201
0d0) N
m 09) (N19)
SOILSILYLS Zo_mwm%o YETRE zo%%_%mm NOILYSNINOD b=l NOLLYZISYINIT
310N o WHONIL | | | | TN e HOSNIS
- T - -
WQ 0€01 8Z01 90T vogig vy 2201 Q)
061

(YING) AMOWIIN 3™NLOId

(7S)(€S)(2S)

- 007

HOSNAS

U.S. Patent Aug. 11, 2015 Sheet 70 of 172 US 9,105,078 B2

P 1060

3 fpn_frame BITDEPTH |
f=—offset width{1]—>t=offset width[0]—

GAIN OFFSET(1] OFFSETIO]
([(
1066 1064 1062
FIG. 92
1070

DETERMINE FIXED PATTERN NOISE
CORRECTION FACTORS FOR FACH PIXEL [>—1072

l 1074

IS ROW
FIXED PATTERN NOISE
ENA?LED

NO

YES

DETERMINE FPN CORRECTION
FACTORS FOR EACH ROW ~— 1076

IS
COLUMN FPN
ENA?LED

NO

YES

DETERMINE FPN CORRECTION
1080~ FACTORS FOR EACH COLUMN

1082 — APPLY FPN CORRECTION FACTORS TO IMAGE

FIG. 93

U.S. Patent

Aug. 11, 2015 Sheet 71 of 172

US 9,105,078 B2

RECEIVE GLOBAL INPUT AND /
OR OUTPUT OFFSET

N

NO GLOBAL OFFSET

APPLIED BEFORE
G%IN

YES

APPLY FPN OFFSET CORRECTION
FACTORS AND GLOBAL OFFSET BEFORE
FPN GAIN CORRECTION FACTORS

N— 1096

APPLY FPN OFFSET CORRECTION
FACTORS AND GLOBAL OFFSET AFTER
FPN GAIN CORRECTION FACTORS

1098

FIG. 94

U.S. Patent

Aug. 11, 2015 Sheet 72 of 172

US 9,105,078 B2

RECEIVE RAW IMAGE DATA

DETERMINE MOTION DELTA
FOR RESPECTIVE PIXEL

DETERMINE MOTION LOOKUP

TABLE INDEX FOR RESPECTIVE PIXEL

~—1116

DETERMINE BRIGHTNESS
VALUE FOR RESPECTIVE PIXEL

~—1118

/

MORE
NO THAN ONE

BRIGHTNESS

LEVEL
?

DETERMINE BRIGHTNESS LEVELS THAT
CORRESPONDS TO PIXEL BRIGHTNESS

~~—1122

DETERMINE MOTION
TABLE FILTER COEFFICIENT

~—1124

INTERPOLATE BETWEEN INTERPOLATED
MOTION FILTER COEFFICIENT BASED
ON CURRENT RIGHTNESS VALUE

~—1126

FIG. 95

U.S. Patent Aug. 11, 2015 Sheet 73 of 172 US 9,105,078 B2

1130 1132 1134
) /)
), i-2, 1)), i, 1) (), i+2, +-1)
REFERENCE PIXELS
FIG. 96< 136 1138 1140
/ / /
X(j, -2, 1) x(, 1) X, 142, 4
N ORIGINAL PIXELS
0
MOTION TABLE 0
BRIGHTNESS= 0
65 0
MOTION TABLE 1 MOTION TABLE 0
BRIGHTNESS = BRIGHTNESS= 0
0.5 x BRIGHT MAX 65
MOTION TABLE 2130 MOTION TABLE 1
BRIGHTNESS = BRIGHTNESS =
BRIGHT MAX 0.25 x BRIGHT MAX 13
194 MOTION TABLE 2 |0
FlG 97A BRIGHTNESS =
. 0.5 x BRIGHT MAX |,
MOTION TABLE 3
BRIGHTNESS =
0.76 x BRIGHT MAX| .
MOTION TABLE 4
BRIGHTNESS =
BRIGHT MAX
324

FIG. 9/8B

U.S. Patent Aug. 11, 2015 Sheet 74 of 172 US 9,105,078 B2

1150
/‘

DETERMINE ADJACENT MOTION
1150 —" LOOKUP TABLE INDEXES FOR MOTION
TABLE LOOKUP INDEX OF RESPECTIVE PIXEL

RETRIEVE MOTION TABLE
1154—1 FILTER COEFFICIENTS BASED ON
ADJACENT MOTION LOOKUP TABLE INDEXES

INTERPOLATE MOTION
1156— TABLE FILTER COEFFICIENTS

FIG. 98

1160
1162 4
/

MOTION HISTORY h(j, i, t-1) ——] .
INPUT PIXEL x{j, i, t) —4—> M0T|0(I\IM)TABLE |MOTION HISTORY he, i,

REFERENCE PIXEL rj, 1, -1}

FILTER COEFFICIENT (K)

X, D1 LUMA TABLE
0 N-1164

FILTER COEFFICIENT (K')

%PUT FILTERED PIXEL y(j, i, 1)
(Yout)

X, 1, 1)
i, i, =1

TEMPORAL FILTER |

(
FIG. 99 1028

—

U.S. Patent Aug. 11, 2015 Sheet 75 of 172 US 9,105,078 B2

/-1172 /-1174 /—1176
////'///7/: ///47//'//? ////'///7/:
3/5/%315&2/ RPN, 55%315;,’}2;
53] P | Pa P3| P |P4 P3| P [P4]
777, 777
;/Q Pe | P7 P5| P61 P7 PH| P86 ;ﬁ7/

TOP-LEFT (N=3) TOP (N=5) TOP-RIGHT (N=3)

/—1178 f1180 /-1182
777 777
;/B/(} P1| P2 PO P1|P2 PO P1 ;/P//Q//
/83/’ P P4 P3| P P4 P31 P ;857’
777 777
5] P6 | P7 P5| P6 | P7 P5 | P6 [£7]
LEFT (N=5) CENTER (N=8) RIGHT (N=5)

/-1184 /-1186 /-1188
EREZ o|P1|P2 1 (7
//B/, PL{P POIPLIP PO P ;/P;;
73] P | P4 P3| P | P4 P3| P [P4]
//////////// ///////////, ////////////
A AR AR ABAAIE) ARIARY AR

BOTTOM-LEFT (N=3) BOTTOM (N=5) BOTTOM-RIGHT (N=3)

FIG. 100

US 9,105,078 B2

Sheet 76 of 172

Aug. 11, 2015

U.S. Patent

10T Ol
NOILOFHHYOD T3IXId 949 NOILIFHHOD 13IXId 4 NOILIFYH0D TIXId o NOILIFHHCI 13IXId 4D
£991999[G991909D |99 L8198 |64 (949 | .8 (9|94 |64 |94 (/Y LD 1940|610 |90 | L1D
yaO €99 [2UD €90 | v9D va1€g|¢cg|€£d|vd vd | Ed |2 | €Y | VY D 1 €49 [210 | €10 | 174D
9909 |1 0 |09D{19D 1104 0 (04|14 Td 04| O |0 | TY o0 0 |0D|TD
7A9 €99 240 €9D | YD ve | edg |28 | €8 |vd vH | €Y | cd | €Y | Y O | €D [0 | €10 | 14D
£891999[49D{999 /499 (8198199949 |.8 {4194 |G |94 | /Y JERNWENN IEN LR WA

U.S. Patent

Aug. 11, 2015

RECEIVE INPUT PIXEL
P AT TO

COMPARE PIXEL
LOCATION TO STATIC
DEFECT TABLE (SDT)

Sheet 77 of 172 US 9,105,078 B2
/-1200
1202
1204

MARK CURRENT PIXEL
AS STATIC DEFECT
AND DETERMINE [™1208

REPLACEMENT VALUE

1210

PROCEED TO
DYNAMIC /SPECKLE
DETECTION /
CORRECTION

FIG. 102

U.S. Patent

Aug. 11,

2015

RECEIVE INPUT PIXEL
P AT TIME TI (E.G.
DELAYED BY
2 SCAN LINES)

1222

(TO FIG. 104)

IDENTIFY NEIGHBOR
PIXELS WITHIN
IMAGING FRAME

1226

CALCULATE PIXEL-TO-
PIXEL GRADIENTS WITH
RESPECT TO EACH
NEIGHBOR PIXEL

1228

Sheet 78 of 172

/-1220

DETERMINE NUMBER
(C) OF GRADIENTS
BELOW dynTh

~~1230

NO

1238

C< =dynMaxC
?

NO/G

av>spkTh
7

PASS P WITHOUT

US 9,105,078 B2

CORRECTION 1234
MARK CURRENT PIXEL , MARK CURRENT PIXEL
AS A DYNAMIC DEFECT AS SPECKLE
((
1236 1240
(TO FIG. 104)

FIG. 103

U.S. Patent

Aug. 11, 2015

RECEIVE INPUT
PIXEL P

1252

Sheet 79 of 172

US 9,105,078 B2

/—1280

CORRECT P USING

DETERMINE
DIRECTIONAL GRADIENTS
(E.G. h, v, dp, dn)

1258

DETERMINE MINIMUM
DIRECTIONAL GRADIENT
AND IDENTIFY 2
NEIGHBORING PIXELS
ASSOCIATED
WITH MINIMUM
DIRECTIONAL GRADIENT

N~—1260

OUTSIDE OF THE IMAGE
FRAME

1262
IS ONE
NEIGHBORING PIXEL YES

REPLACEMENT VALUE
FROM STEP 438

1
1256

1266

\

DETERMINE PIXEL
CORRECTION VALUE Pc
BY INTERPOLATING THE
2 NEIGHBORING PIXELS

1264

1270

SUBSTITUTE VALUE OF
PIXEL OUTSIDE (Pout) OF
THE IMAGE FRAME WITH
VALUE OF PIXEL INSIDE
(Pin) THE IMAGE FRAME

12681

DETERMINE PIXEL
CORRECTION VALUE Pc
BY INTERPOLATING Pin

AND SUBSTITUTED

VALUE OF Pout

\

CORRECT P USING Pc

FIG.

104

U.S. Patent Aug. 11, 2015 Sheet 80 of 172 US 9,105,078 B2

IDENTIFY PORTIONS OF
IMAGE FOR NOISE ESTIMATION

DETERMINE GRADIENTS IN EACH PORTION N_ 1og4

GENERATE NOISE STATISTICS
BASED ON THE GRADIENTS

STORE NOISE STATISTICS IN MEMORY N— 1288

FIG. 105

5 613

PO P1 P2

G7

Gl P3 P P4

P5 Po P7

G6 o

FIG. 106

GO

G4

U.S. Patent Aug. 11, 2015 Sheet 81 of 172 US 9,105,078 B2

31 15 0
BINI1] BIN[O] 0
BIN[3] BIN[Z]
BIN[5] BIN[4]
BIN[7] BIN[6]

SUM GRADIENT MAGNITUDE
SUM PIXEL INTENSITIES
PEAK GRADIENT MAGNITUDE |6

FIG. 107

US 9,105,078 B2

Sheet 82 of 172

Aug. 11, 2015

U.S. Patent

|||)
o To) o) —

o o o O o

o O o o Lo

< D N N = & &
o o ol o o

<t ™~ o s8] w

= T et N =1 N <] N =1 B) B
o o o o o

o) Ioe) — <t r~ o

<t) od) — o
o a o o 0. 0o =
Vo) o o~ W o — -
< o) on ol i =

o ol ol ol o o O
~ o o o} o o4 Lo
< < 0 N\ = =

o o fa 0. Q. 0. o
o0 — <t r~ o o

< <t o ol I —i o
o n. o o o oo A

lll

o N o W X R AR AR NS R M e A W A e AR S e A e e e e T M M M e e e e e e T e wae an e e www v

FIG. 108

U.S. Patent Aug. 11, 2015 Sheet 83 of 172 US 9,105,078 B2

RECEIVE CURRENT INPUT PIXEL P(j,i) 1332
AND IDENTIFY SET OF NEIGHBOR PIXELS "
FOR SPATIAL NOISE FILTERING {e.g, 7x7 BLOCK)

IDENTIFY FILTERING COEFFICIENTS FOR 1334
EACH FILTER TAP OF THE SPATIAL NOISE =
FILTER (SNF)

DETERMINE ABSOLUTE DIFFERENCE 1336
BETWEEN P(j,i) AND EACH NEIGHBOR "
PIXEL WITHIN THE SNF SET

DETERMINE ATTENUATION FACTOR FOR 1338
EACH FILTER TAP USING THE ABSOLUTE —"
DIFFERENCE VALUES

APPLY ATTENUATION FACTORS TO THE

FILTERING COEFFICIENTS OF THE SNF FILTER | ~1340

TAPS TO OBTAIN A SET OF ATTENUATED
FILTERING COEFFICIENTS

APPLY ATTENUATED FILTERING 1342
COEFFICIENTS OF EACH SNF FILTER TAP TO |~
ITS RESPECTIVE PIXEL

NORMALIZE FILTER TAPS BY DIVIDING THE
SUM OF THE FILTERED PIXELS BY THE
SUM OF THE ATTENUATED FILTER 1344
COEFFICIENTS TO OBTAIN A SPATIALLY
FILTERED OQUTPUT VALUE O(j,i)
CORRESPONDING TO P(j,i)

FIG. 109

U.S. Patent Aug. 11, 2015 Sheet 84 of 172 US 9,105,078 B2

RECEIVE PARAMETERS P (INPUT PIXEL), | 1346
DELTA (ABSOLUTE DIFFERENCE BETWEEN P
AND A CURRENT NEIGHBOR PIXEL), j, AND i

(SPATIAL LOCATION OF P}

DETERMINE A BRIGHTNESS INTERVAL |_~1348
CORRESPONDING TO P AND DETERMINE
UPPER AND LOWER BRIGHTNESS LEVELS AND
VALUES BASED ON THE DETERMINED INTERVAL

DETERMINE AN INVERSE NOISE

STANDARD DEVIATION (std_dev inv) FOR |_~1350
P BASED ON HIGH AND Tow

BRIGHTNESS LEVELS AND VALUES

SELECT AND APPLY A RADIAL GAIN TO

std dev inv BASED ON LOCATION OF P 1352

FROM THE CENTER OF THE CURRENT RAW
FRAME

DETERMINE THE ATTENUATION FACTOR FOR | 1354
THE FILTER TAP CORRESPONDING TO THE
CURRENT NEIGHBOR PIXEL BASED UPON

DELTA AND THE GAINED std dev inv VALUES

FIG. 110

U.S. Patent Aug. 11, 2015 Sheet 85 of 172 US 9,105,078 B2

1356
r

P 1358 (R_val)
(snf x0, snf y0)

CENTER

FIG. 111
1

1364
COMPUTE RADIUS (R_val) BETWEEN CURRENT INPUT |/
PIXEL (P) AND CENTER (C) OF THE IMAGE FRAME

DETERMINE RADIUS INTERVAL OF R AND IDENTIFY UPPER 366
AND LOWER RADIUS LEVELS AND THEIR CORRESPONDING
RADIUS VALUES

1368
DETERMINE UPPER AND LOWER RADIAL GAINS ASSOCIATED | _/
WITH UPPER AND LOWER RADIUS LEVELS

1370
INTERPOLATE UPPER AND [OWER RADIAL GAINS TO OBTAIN |/
A RADIAL GAIN FOR P

1372
APPLY RADIAL GAIN TO std_dev_inv -/

FIG. 112

US 9,105,078 B2

Sheet 86 of 172

Aug. 11, 2015

U.S. Patent

98ET—

dvl H3l1ld

INIFHENO Y04 ¥OLOV4 NOILYONILLY
NIY190 01 SHOLJOV4 NOILYNNILLY
INOJ3S NV 1SHI4 31V104431N]I

€1l Ol

A

VRET—

(IX'IP “TX 0P) S3INTVA VL13d d3ddN
ANV H3IMOT ONIANOJSIHE0D S1I ANV
(TX) 13A3T SSINLHOIME d3ddnN NOJN
@d35va F18V1L dN-1007 WO¥4 dOLOVA
NOILVNNALLY GNOJ3S 3ININY3IL3]

08ET—

T3ATT SSANLIHOIEE_JHL
NO d3Sva (IX TP ANV Tx OP) SINTYA
Y1130 ¥3ddN NV H3IMOT 3ININYI13d

28ET—

(0X TP ‘0X 0P) SINTVA VY1134
d3ddN ANV d43MOT DNIANOLSIHHY0D
SLI ANV (0¥) T3ATT SSINLHOIME HIMOT
NOdl d3Svd 318¥L dN—H00T NOH4
d013v4 NOILYANTLLY 1SYId ININYEL3d

8LET—

TAATT SSANLIHODINE ¥3IMOT FHL
NO {3svg (0¥ IP NV OX OP) SINTVA
V17130 d3ddN ANV d3MOT ININYI13d

TWANILNI QINIWYILAA
JHL NO Q3sva (Ix aNY OX)
9LET S13IATT SSINLHONME ¥IddN ANV HIMOT
INIWYILIA ANY d OL SNIGNOJSIHH0D
IWAYIINI SSINLHOIME ¥ INIWYILIA

{(dvl H31T4

Y/ET—d INJHHNO V LV T3XId HO8HOIAN ¥V ANV
d N3IM138 JONIY3I441d T3XId) VY1133
(13XId LNdNID) d SYILIWYHYd FAIFITY

310

US 9,105,078 B2

Sheet 87 of 172

Aug. 11, 2015

o o L0 00
= = IS¢ N
o o o’ o
T STttt)
1
BRI E ~
1 }
al ! ja o’ o f
§ i
i {
i OAN 1
5] I R o] Ol & O !
| 1 i 1523 BN RN !
o “ ol fa ¥ /\P “
§ LY SR,
T b v o - - — t
B e B s B = Y ,_ e
] [So]
w1 R ESE g BE N —=}l e S S
ol 1 oo o tial el o}t 1 A
3 t “ 1 -
] i
" t \.lll._r lllll e m—————]
i]]
[Tg] Ly [ee] '8 B, <t] { I
S B B - I) T B =~ I) B - HE
] 1 {
: i ! 1 ““
b i i
:] ; ! "n
i 3
wl ! o o Flev Vo) ilool — 0!
i R NZ) o N (=l b SR P
(a8 " fall o fDl Q. .DI_ Q. __
| 2 .".).l!.\\ “_
i i
I]
§ H
f by
I Y BT el I S N) B T B PP R I
al v ia a. ol as tal 0 nr“" o
” ” llllllll et
i H
1 sf }
oof {00 — ~ r~ o o t
< <t <t o o~ d ~| w0 1L 1 O
al | ia a. o o o Al o o) |
1 o~ }
N e o o o o o v o 2o o 2 o o e e e e e o e e o Y s
o0 0 — <t r~ o o
= @O O
3 3 a a & a & o o

U.S. Patent

1394

FIG. 114

US 9,105,078 B2

Sheet 88 of 172

Aug. 11, 2015

U.S. Patent

P 3NIL LY vivad 13XId

/\
hantiesienienlasietth o ottt e asieaiaaiadiasibadiesieniniilienie i b o fle ot il alea il Iv m\ lll
0d 1d ¢d | | 84| | td | [Sd| [9d|: 3{0d] [1d]| [ed| [Ed| [bd| {Sd] [9d
74| [84] [ea] [owd] [1d] [cd] [€d]: i1 £d | | 8d] [6d] [oid]| [1d] |z1d] |€1d
P
yid| [S1d] [o1d] [z1d] [ewd] [61d] [oed]i ![vid] [swd] [owd] [z1d] [81d] [e1d] [0cd
Lo
N
led | |eed| |€ed| |ved| {Sed| [92d| [ced|i illed]| |ced| |ged| |ved| |Sed] |9ed| |[Led
)t
|
8cd| |6zd| [0ed| |Ted| |eed| |e€ed| [ved|i i|82d| [62d| [0ed| [led| |¢td| [eed] [bEd
b
Lo
Ged| |9ed| |sed]| [8ed| |6ed| |ovd| |iwd|! i|sed| [9ed| [zed| |sed| [eed]| |ovd]| |itd
. 3
B
evd| [evd] [wwd]| [ovd] [ovd] [ivd] [std]i ![2vd] [evd] [vvd] [svd] [ovd] [ivd] [8¥d

U.S. Patent Aug. 11, 2015

1410\

Sheet 89 of 172

US 9,105,078 B2

RECEIVE CURRENT INPUT PIXEL P(ji) FROM CURRENT FRAME AT TIME T

| _~1412

'

¥

IDENTIFY SET NEIGHBOR PIXELS
IN' CURRENT FRAME FOR SPATIAL
NOISE FILTERING (e.g., 7x7 BLOCK)

IDENTIFY SET OF CO-LOCATED NEIGHBOR
PIXELS IN PREVIOUS FRAME FROM TIME T-1
FOR SPATIAL NOISE FILTERING (e.g., 77 BLOCK)

1414~ |

| \-1416

'

IDENTIFY FILTERING COEFFICIENTS FOR EACH FILTER TAP OF THE SPATIAL NOISE FILTER (SNF)

!

| ‘ 1418

DETERMINE ASSCLUTE DIFFERENCE BETWEEN
P(j,i) AND EACH NEIGHBOR PIXEL FROM TIME
T WITHIN THE SNF SET OF NEIGHBOR PIXELS

DETERMINE ABSOLUTE DIFFERENCE BETWEEN
P(j, AND EACH CO-LOCATED NEIGHBOR PIXEL
FROM TIME T-1

1420

1430

DETERMINE FIRST SET OF ATTENUATICN
FACTORS FOR EACH FILTER TAP USING THE
TIME T ABSOLUTE DIFFERENCE VALUES

DETERMINE SECOND SET OF ATTENUATION
FACTORS FOR EACH FILTER TAP USING THE
TIME T-1 ABSOLUTE DIFFERENCE VALUES

1422~

1432

APPLY FIRST SET OF ATTENUATION FACTORS
TO THE FILTERING COEFFICIENTS OF THE SNF
FILTER TAPS TO OBTAIN A FIRST SET OF
ATTENUATED FILTERING COEFFICIENTS FOR
TIME T PIXELS

APPLY SECOND SET OF ATTENUATION FACTORS
T0 THE FILTERING COEFFICIENTS OF THE SNF
FILTER TAPS TO OBTAIN A SECOND SET OF
ATTENUATED FILTERING COEFFICIENTS FOR
TIME T-1 PIXELS

1424

\1434

APPLY FIRST SET OF ATTENUATED FILTERING
COEFFICIENTS OF EACH SNF FILTER TAP TO
ITS RESPECTIVE PIXEL AT TIME T

APPLY SECOND SET OF ATTENUATED FILTERING
COEFFICIENTS OF EACH SNF FILTER TAP TC
ITS RESPECTIVE PIXEL AT TIME T-1

1426

\1436

DETERMINE SPATIALLY FILTERED VALUE
FORPATTIMET

DETERMINE SPATIALLY FILTERED VALUE
FOR P AT TIME T-1

1428~ |

| \1438

COMBINE TIME T AND T-1 SPATIALLY FILTERED
QUTPUT VALUES USING WEIGHTED AVERAGING
T0 OBTAIN SPATIAL FILTER OUTPUT

FIG. 116

1440

US 9,105,078 B2

Sheet 90 of 172

Aug. 11, 2015

U.S. Patent

98Vl 98yl 09pT 0\

T IRERT AG3A003 LHOIHAI 0681 17 \ | REAOI3Y THSTHOIH

“ 3% N At
wios | lonissoond| 1 dmo Feq 20N QNY |7 \oh N1 awsonac
s HE RIS O N33 I O B B2 T T s I T s

“ T a0y <
7 ! rev~ | y Y) Yy
0p0T S Sum— — eyl 98VL T O.1 9e0T 48bT vEOT ¥8YI Nw:

(2601

08y T —" 8201

US 9,105,078 B2

Sheet 91 of 172

Aug. 11, 2015

U.S. Patent

A
¢¢d | 129 |0c8 ¢¢d|129{0cd ¢ccd | 129 |0cY
¢IO |11 | O1Y CID|TI™ {010 ¢io| 114 | 019
204|109 {004 <08 {109 {004 ¢04 109 |00y
d3d NO ¥9/ 99 d3d NO 3IN1d iN1d NO {43y
¢ed|1¢9 |0cy ¢¢O|1cd {0eD ¢¢9|1¢8 [0D
¢19 1149 | 019 c1g | 119 {014 ¢ld | 11D | 0T
2041109 |00y ¢09 {104 {009 ¢09]104 [00D

N8 NO ¥9/ 89

g9 NO 3IN19/ d3d/ 49

49 NO IN18/ 43d/ 89

U.S. Patent Aug. 11, 2015 Sheet 92 of 172

US 9,105,078 B2

COMPUTE CLIP_LEVELS N 1514
PROVIDE NORMALIZED VALUES N— 1552
OBTAIN CLOSEST OUTPUT VALUES N— 1554
LINEARLY INTERPOLATE OUTPUT VALUES N— 1556
MULTIPLY BY CLIP LEVEL \‘1558
REPLACE PIXEL VALUE WITH
HIGHLIGHT RECOVERY VALUE ~— 1562

FIG. 120

U.S. Patent Aug. 11, 2015 Sheet 93 of 172 US 9,105,078 B2

1693
16963 a

1695a 16985 | 1695d 1697p 1696D

mmmmmmmmmmmmmmmmmmmm

1694b

1694a

%0/»000“
LR D
e WD A

#4',@0@'»33,,
DR DL DL
PETH T

FIG. 121

U.S. Patent

Aug. 11, 2015 Sheet 94 of 172

US 9,105,078 B2

/1700

& ®

O,
®

®
O,

@ o el @ .

FIG. 123

US 9,105,078 B2

Sheet 95 of 172

Aug. 11, 2015

U.S. Patent

10Q204d34

@0L1) 601~

IZARNIE
/g1 Q1901 NOLLOZHH0O NOILYHYIEY JILYWOUHO
ATAEN AU
S319vL IN3I0I44300 YL syad
ONITVOS HNITVOS
0TIl qwoiy3n | 6041 IWINOZIYOH
91907 NOILYSNIdINOD SNINNIg

(00LT)
1N0A

\
80L1 AYLLINOHID ¥IWOS MY

Nm@H\

US 9,105,078 B2

Sheet 96 of 172

Aug. 11, 2015

U.S. Patent

0=X3aNI 7 =X3aNI 0=X3aNI ¥ =X30NI 0=X3aNI
0'8=v0d 0'9=vad 0'v=vad 0'2=vaq 0'0=Yad
ot © ® © @
& =X3ANI T=Y30NI 9=X30NI £ =X3aNI 0=X30NI
0'/=vad §2'5=vaq g'e=yag §/'1=v0d 0'0=Yad
-~ ® & @ ©® o @
2=X30NI 0=X3aNI 9=)3aN| 7=X3ANI Z=X3aN 0=X3aNI
¢'L=vaq 0'9=vada G'v=vaa 0'£=vad §'T=vaa 0'0=vad
0 ®© © © 9 ©® o
9=XIANI G=x3aNI P=XIONI €=XIANI Z=XIANI T=X3ANI O=X3ANI
¢'/=y0d0 ¢z9=yad 0G=vad S/E=¥A0 §7=Y4d GZT=Yad 0'0=vYqd

o © ®

0=X3dNI 0=X30aNI

O=X3ANI 0=X3ANI O0=X3aNI O0=X3aNI

®© & ©®© © O

0=X30NI O=X3ANI

0=X30N|

08=v¥Qd 0'/[=Ydd 0'9=¥Qd 0'S=vad OPv=vdd 0'¢=vdd 07¢=¥dd 0T=vdd 00=vad
~O 0 O 66 © & ®©® O @

10£L9 67
Sy €10

viLl

€ ¢ 1
L 9§

0'7=Ydaisyaa

G/ T=Yde1syaq

6'7=YdRISYqq

G T=X0a1Sy(Q

0'T=YXdaisyaq

v e 1 X40NI 43y
om@m v xumz_zummo

U.S. Patent Aug. 11, 2015 Sheet 97 of 172 US 9,105,078 B2

INITIALIZE DDA AND DETERMINE STEP SIZE 1721
(DDAStep)

DETERMINE CURRENT DDA POSITION (curDDA) p—1722

DETERMINE CENTER SOURCE PIXEL LOCATION
(currPixel) FOR OUTPUT PIXEL LOCATION —1723
CORRESPONDING TO currDDA

DETERMINE CURRENT COEFFICIENT INDEX 1724
{currindex) BASED ON currDDA

SELECT SOURCE PIXELS AROUND currPIXEL AND OF | 1725
THE SAME COLOR FOR MULTI-TAP FILTERING

SELECT FILTERING COEFFICIENTS BASED UPON 1726
CURRENT COLOR AND currlndex

APPLY FILTERING TO DETERMINE
VALUE FOR OUTPUT PIXEL LOCATION —1727
CORRESPONDING TO currDDA

INCREMENT DDA BY DDAStep —1728

FIG. 126

U.S. Patent Aug. 11, 2015 Sheet 98 of 172

1723\
DETERMINE WHETHER OUTPUT PIXEL LOCATION

CORRESPONDING TO currDDA IS EVEN OR ODD

1729

1730

1S
OUTPUT PIXEL
LOCATION

EVEN
?

YES

1731 1732

US 9,105,078 B2

INCREMENT currDDA BY 1 AND

APPLY ROUNDING TO NEAREST

EVEN INPUT PIXEL LOCATION TO
DETERMINE currPixel

USING currDDA VALUE, APPLY
ROUNDING TO NEAREST ODD
INPUT PIXEL LOCATION TO
DETERMINE currPixel

FIG. 127

1724\

DETERMINE WHETHER OUTPUT PIXEL LOCATION
CORRESPONDING TO curDDA IS EVEN OR ODD

L—1733

l

1734

1S
OUTPUT PIXEL
LOCATION

EVEN
?

YES

/1735 /1736

INCREMENT currDDA VALUE BY

INCREMENT currDDA VALUE BY
ONE INDEX STEP AND
DETERMINE currlndex BASED
ON LOWEST ORDER BIT OF
currDDA INTEGER PORTION AND
TWO HIGHEST ORDER BITS OF
currDDA FRACTION PORTION

ONE INDEX STEP AND ONE
PIXEL SHIFT, AND DETERMINE
currlndex BASED ON LOWEST
ORDER BIT OF currDDA
INTEGER PORTION AND TWO
HIGHEST ORDER BITS OF
currDDA FRACTION PORTION

FIG. 128

U.S. Patent Aug. 11, 2015 Sheet 99 of 172 US 9,105,078 B2

15

1

0.5

i
0

DISTORTION (PERCENT OF MAXIMUM RADIUS)

FIG. 129

|
-0.5

1

-1

o
B
o~
1 T I I] I I | T I
~— o « M~ 9 ©un & M N O
o) <o o o o o o] o o
SNIavVY d31-01SIANN dIZITYINYON

U.S. Patent Aug. 11, 2015 Sheet 100 of 172 US 9,105,078 B2

US 9,105,078 B2

Sheet 101 of 172

Aug. 11, 2015

U.S. Patent

€0

¢0

(SNIAvd WNINIXYIN 40 LN3O¥3d) NOILYOLSIQ JAILYIIY

o
I

¢el Ol

0

10~
.

At
_

€0~

ve/ll

ATA

|
~
O

o
O
qILHOLSIQ NIFMD

|
™~
)

|
=
)

U.S. Patent Aug. 11, 2015 Sheet 102 of 172 US 9,105,078 B2

FIG. 228

US 9,105,078 B2

Sheet 103 0of 172

Aug. 11, 2015

U.S. Patent

” HOLYYINID L HOLVYINID m
| 6L 31wNIa¥002 » alyNIQ¥00d 9L,
| MTdNYS3Y TYLNOZINOH L OVEAGI000A Fy37divs3y TILYIA i
| INI ! m
i MNIEO0K) npanooon] ¢ ! "
L HITdNYSIY P YITdINVYSTY “
| YINOZIOH | WOLLYIA UNDOYOOOA
L el o P A
“ EIRE - PRLT — YITIONLNOD !
o 3SYHE8 dl6 | 434408 NN |
ﬁém ! m y20TXZE m
\</<m“ A A TR(E Y3L4IHS 8Y0ZX9T “
i 0641~ XAW ' 1 | 3SVHd8 el T S S —
! o] dvLs syisng anm | 4 NI
! 034 LIHS — FavdngiNog | 1 VYD
| ! L MVY
| N—g8/1 L N—98 281 0841
Ve e e e e e ﬁxlllllllllllll_ f e e /HH lllllllllllllllllllll i
pLLT 2L11 N o/

US 9,105,078 B2

Sheet 104 of 172

Aug. 11, 2015

U.S. Patent

SuILIgUBA

] 49140V AdA
GET DI 8IPS40YqQA
HIBSEOVATA
1919SL0VAdA

f/; 0c¢81

m——
A N disily

HOLYYINIY [SeSieming

) FLYNIQH00D |
wnogx . T T YT WOILYIA HIpIMY]

B r—————

—— deISyaaaA
NOILYISNYAL LYNITHO00 AMASURS 7 WYaaA

— ININOJINOD N
PI0ODA | 0L HOSNIS T¥OILYIA NOILYLNdWOD 0181 sl

INIWIOVIdSIa
\ ¥181 |dSIgA TYDI1YIA

9181
(

¢I81

10[07)

Yy

Mausnido

Yi8jusnido

3|eogpey
vf 9//1

US 9,105,078 B2

Sheet 105 0of 172

Aug. 11, 2015

U.S. Patent

0881

JusWwoe|dsIgA

INIWEIVI4SIA Tvidvd

i/1 ‘ 1405/ 1
LJ 0481~/

K
500 28
» .
2/81 /1 9¢€T 91
VL8T—~ [0:€]
p|
dYIINI mnt | 00
@Nmﬁ\\\ 2981 8G8T
N N Aejua)ido
- INY s -
¢ AJ0SUAS
9987 68T
N‘_ \Lﬂv
8987 9G8T
8981 \, N yisuanydo
- Ny — 54 -
¢ o9y
981 2681
aleagpey

US 9,105,078 B2

Sheet 106 of 172

Aug. 11,2015

U.S. Patent

PJOODA <

LEL Ol

9061

XN

v06 w/

dsv

¢06 w\ H

10]0)

,,,,,,,,,,,,,,,,,,,,,,,,, J9319s} JOVAJA

<« g39S} JOVAdJA
<« {19s} JOVAUA
<« JD19S} JOVAJA

butuuigus

PIOOHAIOSUSSIIOD)

0061

U.S. Patent Aug. 11, 2015 Sheet 107 of 172 US 9,105,078 B2

(] ™N o (2]
] el e el
(] N — (22}
o and ——d —d
(e») N Ll (2]
e o aneed el
S o r 0 | 7| 3|dwes
O N L (28]
oo] wd ol
(e») o™~ ~—)
o] ancnd mad o
o oN o (4a]
—] —l et —
2 o = 9 | goduies
[N L (2p)]
anad anand wanand anand
(&) N Ll ™M
—d —] — —d
< o~ e (aa)
e el e —d
(a8}
2 o = ™ | a|dwes
(] N - (aa)]
ol aed -t —d
O o Lt ™
e e e e
< N o ™M
— — — —
™~ ™
2 o = 2 | ooduwes
< < <t
[« B (« B} o0
= = = o
: — — g
D e o
5 a 3 Y
= = <= <2,
— Li

U.S. Patent Aug. 11, 2015 Sheet 108 of 172 US 9,105,078 B2

(@] N poa 23]
—t ol — e
O o~ o o
]] ed d
[ew] o~ ~— o
— e e ek
S i = “ | L 9|duwes
(] ™~ oo o™
mand ed e ——d
(w) N L o
ned | e]
O N Lol o
e | e el
S o - | Op] 9|dues
O o~ o (8}
ned] e o
(e ()] Laad o
o e — |
o o~ — (2]
— —t] o
3 N = @ | 9¢| 9|dwes
o o~ o (s8]
owed eed o | o
QO o~ -~ o
] e e e
o o~ o~ N
oned ased - -
3 i~ - M | 7€ 9dwes

Input Line -4
Input Line 0
Input Line 4
FIG. 139

U.S. Patent Aug. 11, 2015 Sheet 109 of 172 US 9,105,078 B2

600

l
500

!
400

]
300

FIG. 140

;
200
VERTICAL BAYER QUAD COORDINATE

1
100

I i I i | | |
Al o (QV v < L Q¥ o <r

(SINIT d3AYE) NIFHD OL IAILYIIY 13S440

US 9,105,078 B2

Sheet 110 of 172

Aug. 11, 2015

U.S. Patent

[T Ol

guluugzioH

g918s0vaax

1009

ROJX

giesgovadax

N
A\ 2 PR T ¥

d19s4Ovaadx

'
a

AD1RSHOVYAaX

DIOCOX

NOILYTSNYdL 3LYNIT400D
ININOJWOD
OL dOSNIS TVINOZIMOH

[

8461

9661

AoOSuag

A 4

NOILY1INdNOD
INFWNIIVILSIC

910X | v LNOZIMOR

HOLYHINID
31VYNITH002
1YINOZIYOH

| o ———t—

XI3sil

ffrr—e——————

3I9HINQ

|fammcmacmacancoesconn

HIPIMING

|t

daISyYaaA

P e

WyddA

S e R LY

daisyaax

e

(

a6l

[
61

Wyadx

ABjue0Idg

xeaido

3[easpey
N 0561

US 9,105,078 B2

Sheet 111 of 172

Aug. 11, 2015

U.S. Patent

000¢

Jusweor|dsigy

INIWFIVILSIA TYIAYY

i1 1498/ 1
\W/ 0661~/

A
x ®
IE o A4 R0
8661
7667 —~ [0°€]
4
dY41NI 1N [¥:11]
J0[07)
@mmﬁ\ ¢861 8L61
,/ f Aeue0ido
y aNY {18V -
AJOSURS
9861 VL6l
p
2! mv
0861 9/61
8861 \ N yisado
= (NY S 15V -
Unooy
¥86l ¢lol
sleaspey

US 9,105,078 B2

Sheet 112 of 172

Aug. 11, 2015

U.S. Patent

PI00DHX -«

£rl 9l

XN

QN@NU/

10]0)

<« (5195 JOVAAX
< @195 JOVAdX
<« d195 JOVAAX
<«—— 1D19S JOVAAX

dSv

9¢0¢

<« PI00DXIOSUISIIOD)

mmomk H

buiuuigziioH

N

0¢0¢

US 9,105,078 B2

Sheet 113 of 172

Aug. 11, 2015

U.S. Patent

71 9|dures

L Old

7 9|duweg

0 9|dweg

- 9|dwes

£99) €81995) (8|59 18 ¥aD) 09 (€D (4D (19D 09D
OLY| ZAD] 6d|949| 8d | S4O| LY |¥ID| 94 |€4D| SH | IO| d | 1ID| €H 04O Cd R Od
£99) €91995) 28599 18¥q9) 08 1€9D) |95 |99 109D
0LY[Z1D] 64|94D| 84| %ID| Ld|p4O] 94 |€ID| Sd |TID| vd | 14D €Y | 04D| TY L 0d

09Ul

US 9,105,078 B2

Sheet 114 of 172

Aug. 11, 2015

U.S. Patent

09 9|dwieg

05 aduues

Gyl "Ol4

76 9|duweg

gy ajduwes

i 3|dueg

0F 3|dules

0E4D

M~
o~
[aa)

6099

9(8

)

LM

(4

[

124!

9749

(cd

5P

4!

740

08

48]

61d

ey

818

1{99

(18

099

918

3%

0812

43

6019

L€y

819

0¢Y

L9

6(Y

90D

8(d

5D

LY

1468,

9Y

q49)

SCY

(o

b

14D

4

019

0E4D

L8

6(%)

98

8(%d

14!

s

7(8

979

{d

S99

4!

(9

0cd

¢

614

uPd

8ld

149

£19

0299

914

33

0t

(¢d

6019

%

809

0¢d

Lt

64

909

80y

59

LTY

719

9CY

3E)

Sl

o

¥y

100

¢ad

0219

02Ul

U.S. Patent Aug. 11, 2015 Sheet 115 of 172 US 9,105,078 B2

o
LS
S
o
b O
0
- St
™~
=
2
L 39
S
2
o5 WO
R0 <
o o |
L
E -
_gm (.5
<t .
= L
|_
=
o
..-.o—
o
)
T
o
L. S
oNd
o
- &S
i
T T T T | T ©

(I1dNVS Y3AVE) N3FYD OL JAILYIIY 13S440

US 9,105,078 B2

Sheet 116 of 172

Aug. 11, 2015

U.S. Patent

0011

JAZENIE

0Lt
{00id00A OL)

(YWQ) AMOW3W JMN1IId

o.:um/J

m._omJ

910 —

J NOILYYINTD

_‘zé@ozz
8106~

(LN10) 318Vl ([Z100D)
dooT — z duvm YWAYD 99y am&,\%%_w%%oo
¥0100 a-¢ [£5] ‘Nivo 138440 | LD LIS
(3 05} S qsi _J
710€ 020¢ (20IdMYY
9008 0008 it WO)
J 700§ 200§ i
Wy Xdoww | LB T am 009) LIS J LIS J £33 e
, N g a8 [(NIT) ONIddvi q8! wIa)y | me
NOILOIHYHOD T dINYTD
vy VS IS0 INOL 1907 IYSOWIa
L LS 08
800€ 2014a8y (gq) | LIS Med/ qd
091"
00— (VINQ) AMOWIW TUNLOId (@8)

US 9,105,078 B2

Sheet 117 of 172

Aug. 11, 2015

U.S. Patent

iidlclg
BN KA A
IR —
AAAY
ovos—"
i ; iléiléli
;] AP
r0E~ rr0E~ T —
" " AEE
b\ ' 8c0s—"
grarars ATl 519515 5T [5]¢
alalala MBI BIEIEIR /191 1D
algalalg NN 551515 —— [5T15T] <
glalald dlalu]y BRI RABIAE |
sy0e—" avos—" [] vvoe—" 9806—" IEIEIE
MEIBIE
IEIEIE
3YSON3a MEIBIE
ye0g—"
V Zv08 Auw
050e~§ IOV Zeoe~y 3OVAA
a9y T1n4 HIAYE MVY
os0e—"

U.S. Patent Aug. 11, 2015 Sheet 118 of 172 US 9,105,078 B2

Gl |R/B
B/R| G2
FIG. 149
-
Gb Gb
S N Y
R R
eh—abs(ol %@)
G | B | ab
1) (1)
G | B | Gb
EV:abS(ol ol o)
R | o | R
G | B | Gb
| |
P

FIG. 151

US 9,105,078 B2

Sheet 119 of 172

Aug. 11, 2015

U.S. Patent

T+1 -
081 94 B | Y| ?
@ | ™ 1o
g | v g
A |y |m»
(1) (T (T
g || g
|y | ;.
Z+l T+ 1 T 7
= M
a | 'Y o | |
(1) M
A 4l | ¥ | s |
= M
a | e | T |

e

o

T+ -
OO O],

|y | |F

g || g {14!

) | @ | @& _
9 o e [vmgm A3
g |l g |-
I

|y | »
ZHl TH 0 T g
= @ ()
| ¥ el 8]ep
= @ =

I R VI R Y
= @)
®| 9o e

T+!

_ vmmmu:m

U.S. Patent Aug. 11, 2015 Sheet 120 of 172 US 9,105,078 B2

-2 i—1 | i+1 i+2
-)} RO | -2
B (1) B (1) B
2y | Gl | j-1
Gr Gr Gr
Nl eND Detta=(| 1y | R | 5y | R | (1 |)/18
J
B Gb B Gb B
. (2) (2)
(2) { G3 | j+1 o - o - o
| ra |42 (-1) {(-2) 1)
— j+
5 Gb B Gb 5
(Q) {(-1) (1)

FIG. 153 FIG. 154

U.S. Patent Aug. 11, 2015 Sheet 121 of 172 US 9,105,078 B2

6DO GD1
Gb
8 | & | 8 8 | Gb | B
Gr Gr
Gr| RO o R
Gb
8 | 2| B 5 | G| B
\ /
vV
VDO VD1
R
M R
G G
R R
(1) W
G G
R
R 1)
HDO HDI
R R R R
ol ¢] &R A I T I
\ /
\/

FIG. 156

U.S. Patent Aug. 11, 2015 Sheet 122 of 172 US 9,105,078 B2

GREEN ON RED R

*(1-Wev /256)/ 4
*Wey /256)/4+ | G

GREEN ON BLUE B

*(1-Wev /256)/ 4

o
N

“Wev /256)/4+ | G

FIG. 157

U.S. Patent Aug. 11, 2015

/3080
RED /BLUE ON Gr

/-3084
RED ON BLUE

INTERPOLATED GREEN

FIG. 158

Sheet 123 of 172

US 9,105,078 B2

/-3082
RED /BLUE ON Gb

/—3086
BLUE ON RED

Goo Gpo

U.S. Patent Aug. 11, 2015 Sheet 124 of 172 US 9,105,078 B2

3100
RECEIVE INPUT 4
3102 PIXEL P
3104
?
3106 3108 YR 3110
L \ \
OBTAIN INTERPOLATED | [OBTAIN INTERPOLATED | [OBTAIN INTERPOLATED
B AND R VALUES G AND B VALUES G AND R VALUES

FIG. 159

U.S. Patent

Aug. 11, 2015 Sheet 125 of 172 US 9,105,078 B2

RECEIVE INPUT

CORRECT FOR GND |

IDENTIFY NEIGHBORS

PIXEL BLOCK
{

ANALYZE PIXEL BLOCK
TO DETERMINE
ENERGY COMPONENTS
IN HORIZONTAL (Eh)
AND VERTICAL (Ev)
DIRECTIONS

[U P L UL U U

i DETERMINE i
! CROSS-COLOR

PIXEL P 3114
USING MODE 1 }'\-3116

ENERGY COMPONENTS :\-3122

;CEh AND CEv AND APPLY|
10 Eh AND /OR Ev

L yo s !

APPLY LPF AND HPF TO
P IN HORIZONTAL AND
VERTICAL DIRECTIONS

TO DETERMINE
HORIZONTAL AND
VERTICAL FILTER

QUTPUTS (Gh AND Gv)

3124

!

COMPUTE INTERPOLATED
GREEN VALUE (G) FOR
F BASED ON
WEIGHTED Gh AND Gv

——————————————————————

CORRECT FOR :

| GND USING N_3128

MODE 2 ;

FIG. 160

U.S. Patent Aug. 11, 2015 Sheet 126 of 172 US 9,105,078 B2

RECEIVE INPUT /—3150
PIXEL P N—3152

IDENTIFY NEIGHBORS
OF P FORMING A 3x3

-
PIXEL BLOCK 3154

y

APPLY LPF ON
NEIGHBORING RED
PIXELS

N—3156

APPLY HPF ON
COLOCATED GREEN

N
PIXELS 3158

/—3200
COMPUTE INTERPOLATED
RED VALUE (R)FOR P RECEIVE INPUT
BASED ON LPF [™3160 3202 PIXEL P
AND HPF OUTPUTS

IDENTIFY NEIGHBORS
FIG. 1ol 3204—| OF P FORMING A 33
PIXEL BLOCK

APPLY LPF ON
3206— NEIGHBORING BLUE
PIXELS

APPLY HPF ON
3208—] COLOCATED GREEN
PIXELS

COMPUTE INTERPOLATED,
RED VALUE (B) FOR P

FIG. 162 3210—] BASED ON LPF

AND HPF OUTPUTS

U.S. Patent Aug. 11, 2015 Sheet 127 of 172 US 9,105,078 B2

]

L o
s R
A R

23 V?&
R

‘,;1:,;,;;;,;.’\.

,,_;;:;:;:;:;‘~'¢*~*n:-* 2

e

U.S. Patent Aug. 11, 2015 Sheet 128 of 172 US 9,105,078 B2

R

RN
e
R
:

SR
%

FIG. 166

U.S. Patent Aug. 11, 2015 Sheet 129 of 172 US 9,105,078 B2

3502¢ A_ | ‘& ;\ —

= —]
T
3504< i
| — 3500
FIG. 167
| {::) e S——
3
3502<
o :gé/
wod |]
iISNE ~
\- | 3500

FIG. 168

U.S. Patent Aug. 11, 2015 Sheet 130 of 172 US 9,105,078 B2

3506
\
3908
3210
FIG. 169
4 C:) ~—-—:r--
S
3502 <

3504 <

L | [] \\\\\\\ 3500
FIG. 170

US 9,105,078 B2

Sheet 131 of 172

Aug. 11, 2015

U.S. Patent

nog [VARSIE
‘105 0gsg
Moy
QpGE —J V0T LIHM
~0L-NId
e INT XNMIYN heeThGE
‘Uiegs |—9rse
uteBy 2rse
X/) D0
waog BEuo@ hEoow_ ONIAYYA ATTVILVYAS
TS -
yege ovGeE -
NIy |—sege T ~2se
0£5E 970e
007 3907
NOILYLNINOD dx3 / A: mozﬁ__,%,_ / 501 NOILYLNJWOD
N (Deaf anoa | INIAGYA ATIVILYAS | 301, UIA | JONYNINAT
@wmm NWmm wmwm me owmm
700§ —

ulg ‘u1o ‘ury

U.S. Patent Aug. 11, 2015 Sheet 132 of 172 US 9,105,078 B2

- 3560
3572
3574 - L 310~
L 3578 3568
1550 3576
VJ 23—3564
A d A 4 b d b d ® . h d
3566{ | 1 AL
3580
N R
(
316
T——#——J———»—i P S N
' 3562~ &
: int x I
LO L1
-r [] 3
ii
4
i Tf_
inty

ok

FIG. 173

US 9,105,078 B2

Sheet 133 0f 172

Aug. 11, 2015

U.S. Patent

QLT

Ol

€ese

L UIIA
A.JI dxeA

reae

. HSIYHL 1Y1Id HSTMHL LYIg-
Td1€d]¢d | td|0d|Td|Cd|Ed|td
obag —" :
0598 —7
T19YN3 1114 Z40H T19YNT 1714 Z40H
309¢ 809¢
719¢
mmMm SINEETRIE { YETRIE Nomm 21907
0 n\. HYANIT INIYO! Tvd3LyTIg SIS NOILY1N4WO3
NIVD TYILINI
y ﬁ ONIYILTIA TYLNOZIYOH J Y
819t 919¢) _ 009¢
9g6g —" 909¢ 019 AL 7098

US 9,105,078 B2

Sheet 134 of 172

Aug. 11, 2015

U.S. Patent

ulg
— ‘U9
ury

N 379V NIVD
NI 3LIHM NOILYSNIdINOD
6%6
3 3 7G9E
899¢ 299¢ 959¢)
¢ % ﬂ?r zo_zsuwﬁazgz_éz
no
o INawLsnray |_Y | 01901 NIy
_ Nid JLIHM NOILYSNIdIN0D
- 219071
99gc UIedg ow@m V NOILYINOTYD WNWININ
‘Uledy O
iedy [9YSE 859t zgoe 069¢
8r5e —"

U.S. Patent Aug. 11, 2015 Sheet 135 of 172
31 15
CCMmidl[0] CCMdark(0]
CCMdark{1] CCMbright{0]
CCMbright{1] CCMmid(1]
CCMmidi2] CCMdark[2]
CCMdark(3] CCMbright(2]
CCMmid(7] CCMbright{7]
CCMdark(8] CCMmid(8]
CCMdark{0] CCMbright{8]
CCMbright{0] CCMmidlO]
CCMmid(1] CCMdark(1]
CCMdark[2] CCMbright{1]
FIG. 178
31 15
LocalToneCurvell] | LocalToneCurvel0]
LocalToneCurve[3] | LocalToneCurvel?]
LocalToneCurve[5] | LocalToneCurvel4]
LocalToneCurvel7] | LocalToneCurvel6]
LocalToneCurvel25] | LocalToneCurve[24]
LocalToneCurvel27] | LocalToneCurve[26]
LocalToneCurvel29] | LocalToneCurve[28]
LocalToneCurve[31] | LocalToneCurve[30]
LocalToneCurve[Q] | LocalToneCurve[32]
LocalToneCurve[2] | LocalToneCurve[l]

FIG. 179

13

16

US 9,105,078 B2

U.S. Patent

0

Aug. 11,2015 Sheet 136 of 172
31 15
LocalToneCurvell]l | LocalToneCurve[0]
LocalToneCurve[3] | LocalToneCurvel2]
LocalToneCurve[5] | LocalToneCurvel4]
¢ €& &
LocalToneCurvel25] | LocalToneCurve{24]
LocalToneCurve[27] | LocalToneCurve[26]
LocalToneCurve[29] | LocalToneCurve[28]
LocalToneCurve[31] | LocalToneCurvel30]
CCMdark(0] LocalToneCurve32]
CCMbright{0] CCMmidi0]
CCMmid{1] CCMdark(1]
CCMdark(2] CCMbright(1]
CCMdark(6] CCMbrighti5]
CCMbright(6] CCMmidl6]
CCMmid[7] CCMdark{7]
CCMdark[8] CCMbright(7]
CCMbright[8] CCMmidI8]

FIG. 180

29

US 9,105,078 B2

US 9,105,078 B2

Sheet 137 0of 172

Aug. 11, 2015

U.S. Patent

1N 10T YINWYD
MO100 Q€ —“Jdd Q-1
ww@m w@m
z
gore 0Lt 769€ ggoe 789t zg9¢
R { YN
NDIS WHOASNVHL B
L1S 99y + Ty MO0 (8 [~ g YININYD-34d - ()sqe + LIS g9
v0LE N 5 3 5 ¥89¢
969¢ R 069¢ e
LNO 135440 NI 135440
J g uds
OONM .O :mw
0108 — RGN

U.S. Patent Aug. 11, 2015 Sheet 138 of 172 US 9,105,078 B2

FIG. 182

US 9,105,078 B2

Sheet 139 0f 172

Aug. 11, 2015

U.S. Patent

N —— €81 9l
ceOr ——_ NOILONAZY
- ISION VINOUHD
|~
A 0¥ ey wmov 081
N .)
— NOILDIHH0D 253y
zo_zgwmm:@zgg] NOILHOLSID = mwﬁ,w_%.._ %%ﬂw_&
Somon]] OI413no3n | O , P
om | BIOV—' 195 = 020% | REN
pin rmﬂo.w
(NVD)
yanys 0107 P
¥O80A]
900% ZL1 ow:
oIn 001 W\
g
(08 AU o (050) .>1.A R wi
INZWISPOY 40700 T NOSSIAGGNS YHORHD |<=— NOISYIANOD
/ 1SHHING/ SSINLHONME y o_mmux%% o 7 oNNIdES & | 17] 30vds Wotoo | LF° "
800 0T 3envy JIAwNAG 207 - Z00Y ooy
D04dODA (60)
o1 —"
00T — (YING) AMOW3W 3MNIDId (9G)

US 9,105,078 B2

Sheet 140 of 172

Aug. 11, 2015

U.S. Patent

781 Ol

00V

GG0b

\Nmow

133130 104

13 ummS 104

98Ty wE
Jnoj N
G
881y b1y om:\]
j8Sdiegsun
9/lr—o CLIV 960V
L9 S 860¥ \ Nmov |
[x U0lRINPOY 17594 [uliog
091V 7914 P91V qar <4
m@ﬁ /\ 8oy 0/1¥ 7607
00— /m.v 198/3SU0 e POy 130[SpU BuL0Y
A*1y \oo:mwmov 9/0%
05Ty clﬂclmo | A ESJ..
) M_u 1]
1 g
NIYD ¢ S et b NYISSAYS £4¢
PGTy | 96TV QGIY
gl 971y (ZAVINRAVYA §) N ~090%
vOTY V
1 fIzdieygler—e k14
%a ks 0cTy~" ;%._%rﬂl_ NYISSTIYD GG
Ty H 8ety 90TV r%ov
} frdie) —~990¥
S 71y~ T i
wadnoo[T evY 2£Th 2:7. =i
| Y1y
(- .
NOILISOd 7 ..W:ommz_%mz_ \ P T ¥37H 13809
T 8ElY Octy 21T
Oviv 9ETY TAAN QITr 91l

950v #mO#

840V

U.S. Patent Aug. 11, 2015 Sheet 141 of 172 US 9,105,078 B2

4200
™ 4202 4206
PO|P1{P2 MAX PIXEL
P3P Ipa DOT DETECT |[SELECT
Logic [
P5|P6|P7 MIN PIXEL 4055
4204 ThrDot
//’ ~———4212
p THRESHOLD | —14210
4052 LOOKUP TABLE
4208
1082 4252
4086 1208~ P G
abs(Sharpl)Z] 7~ 4236 N |
e [Cb FILTER] | Cr FILTER |
absioharp Y CHROMA 4738
abs(Shamd) | e ATTENUATION 1254
abs(Edge) LT 1 oo 4258
4232 "4234 4244 CHROMA l
4118 4090 SUPPRESSION
//, //,4240 CALCULATION
4230 CHROMA 4242 \\“4256
Yip == ATTENUATION
LT 2 FIG. 186
w/oen FIG.187 _ . FIG. 188
4260

YSharp

US 9,105,078 B2

Sheet 142 of 172

Aug. 11, 2015

U.S. Patent

NOILYHNLYS 4
cBEY ¥E01D 9/5% poey SYET T
owmﬁ/w_/ zaer~ | osew 0cED
v8EY \v, ¢
A0 U/ z X I O, / pb - O \h. 7—1)
: +
o ,ﬁ ﬂli\ 828y —— - 4 /| Lo
8LV vy ZEEY
19SH0I0 1OSHOI) 1SH0ID BSUOI) o3
826y NOILYMNLYS 90 n az A i
W80O oser| | /a0 N\g
VLEY ZLEY 99ch 95eY IvEY
MBS ik oI, T
) =D ¥ 1 @ O = 0 D=—r—10
01 el >, N+ X | fro
Q9¢Y 0sey ey~ peep QUIS=0) T gsor =gy 9ty
PSH090 7, BSH0G0] 1n a2 WWOMHD| 1PSH090 T04INOD (8) 3NH w8019 | #S409 zzey
2434 8Gey peey
Ziey
BLEP 2\2 V e OTEY 208t
.> \\ '\ + \+J X \.._.J \\ >
01 0zey (fﬁ /L\ I - T or
00Eh yIEY 80EY 90EY 008D
681 14 " SSANIHOIME LSYHINOD .
ONISSIO0Ud A | T POA
2007 yogy—

US 9,105,078 B2

Sheet 143 of 172

Aug. 11, 2015

U.S. Patent

¢'¢'r O0A =—— NOILYINIO3C

06l 9Ol

/

[Q0N

80tv .\

PV TR [E

0 3JdONW

NoSNV/

d31114

1491747 \

001y

Z10v

< V'vv DJA

US 9,105,078 B2

Sheet 144 of 172

Aug. 11, 2015

U.S. Patent

@ @ @ ® @ 10dlNo1 80V
oG
@ ® ® ® ® (Nd1Nn0 90
< @ © @ @ 7] @ @ %) 1NdNI 4D
. | 206t

VOTL ™ OIld e e o e e e o o o LndND

C O @) O O C O O O YA

8 /[9 S ¥ € 'z 1 0 NOILSOd

Ovby 26hh
A. A.
& -)
8EhY 0cwy Ot
iy é- &
Y 9ty h'g Q7Y Ax\\\
re (
1NdLNo waﬁ \Aq@m%q
ALg B ,%v
161 914 P8O D I Jodls+r e +fe i+ o [- [e o[o o] norwsod Taxid
e N—ozty
Zerr g

US 9,105,078 B2

Sheet 145 of 172

Aug. 11, 2015

U.S. Patent

UA14% vo €3 20 I0D0010 20 €0 ¥
ﬁyoﬁ 6 8 9 ¢ v § ¢ | v ¢ 9 48 600 :|Nﬁm.0|
0Svy

¢6l Ol | \

¥0

/. _\ 90

80

YA

I
94y \\

US 9,105,078 B2

Sheet 146 of 172

Aug. 11, 2015

U.S. Patent

8Ly OLyy
A. A.
./ N/
\ﬁmmi\ \ﬁwmg 101747
X n
e8IV T v \ \
el<< 1 X o
1Nd1n0 cLiy YA
08ty & A-
. X T
mmH O_...._ y3€3¢0 I 9+HGHYHE+HZ+HT+ T-12-1E-17-16-19-] NOILISCd 13XId
2917 ® f/iooi.
XA 0

US 9,105,078 B2

Sheet 147 of 172

Aug. 11, 2015

U.S. Patent

G6L Old ey 9.5Y Zish
98Ch—_ POSY 0L5Y
N I
. PN, , : ﬁ A ‘\ 255t
s sl AR SN YALAIHS .
) HI OIS YIOUHD YITWOSYAOHHO [| Tauive yel X8y
TWOILHFA L TANNYHD | | TYOILMIA L TANNYHO | ggop 960pXie NI YIYG
9657 9BOYXZL |
/ — YIWOUHD
865y L 44 | [99 \ 4 | [99 N
PSF =~ 37903 vINOHHD HI VIS YWOUHD BRENTE mwmw%g:% mwﬁw
TYANOZIMOH 0 TANNYHO |/ [TyDILY3A 0 TINNYHD \
9557
| 9657
2997 2s5r— visy HITIOHLNOD -/
%m@// 8367~ 9857~ %/@ 434408 3N
TN , ,
2857 ——— 44 | |90 085Y 44 | |90 N
CST= yzwosvam1 [° wawosym £ BILHS | 055h
WANOZMOH | TINNYHO| | WOLLM3A L TINNVHO | pgsy OBOTHHT A\\
Y . 960P%Z)
285y | 44|90 Ve 1 | |90 St
-] ’ NIVLYO
$ 33y HITVOS VAT HITVOS VAN Mwwmﬁm SHILANEINT |7 ywn
TYANOZIMOH 0 TANNYHO| / [TwOILYSA 0 TANNYHO 31avENS4INOD
0357 857 gep/ sosr vasr—

U.S. Patent Aug. 11, 2015 Sheet 148 of 172 US 9,105,078 B2

/——4600
COMPUTE RADIUS FROM OPTICAL
CENTER OF OUTPUT PIXEL ~— 4602
MAP RADIUS ON SENSOR
TO RADIUS OF LENS ~— 4604

DETERMINE DISPLACEMENT CAUSED
BY LENS USING LOOKUP TABLE ~— 4606

DETERMINE COORDINATES WITHIN
DISTORTED FRAME THAT CORRESPOND

N—
TO COORDINATES OF QUTPUT PIXEL 4608
GENERATE QUTPUT PIXEL
BY RESAMPLING DISTORTED N 4610

FRAME AT COORDINATES

FIG. 196

U.S. Patent Aug. 11, 2015 Sheet 149 of 172 US 9,105,078 B2

LINE NUMBER

FIG. 197

100 200 300 400 500 600 700 800 900 1000

12
10
8
6
4
2
OO

(SINIT) NVYdS

U.S. Patent Aug. 11, 2015 Sheet 150 of 172 US 9,105,078 B2

500

450

350 400

300

LINE NUMBER

N
200 250
FIG. 198

150

100

50

12

(SINIT NVdS

U.S. Patent

Aug. 11,2015

Sheet 151 of 172

US 9,105,078 B2

0

SHIFT

T*

Lingbuf0

Linebuf2
10

:

Linebufl
Linebuf3

0

SHIFT

:

Lingbufd Linebuf®

> UnebufG' Linebuf?

&10

SHIFT

}

Lingbuf8

Linebuf10
10

/

Linebuf9
Linebufll

—
()

SHIFT

|

O
.
(=

L!nebuf12 Linehufl3

el nebufls

—
()

SHIFT

el ety

08 | nebufla

—_—
D
[—
=
=

—
-

SHIFT

glr{

Lnebui20_ . on1

Linebu’22 linehu23

—
[ewg

SHIFT

glr{

LneDuied_ - s

Linebuf26 Linebu27

—
<>

SHIFT

g]u

Linebuf28 Linebuf?9

LneDf30_ el

—
<

SHIFT

gr%_

Linebuf32 Linebuf33

Linebui34 | eouf3s

SHIFT

ST

—
()

Linebuf36
Linebuf38

—

inebuf37
Lingbuf39

SHIFT

]

—
()

LinebufdQ Linehual

- Linebufd? Linebuf13

1660 >IDin 570x80 Dout 89' >
~~—1— 1-PORT RAM 0 4684
B0 lwiEn Addr Ribnfeesl, N
562 89 >IDin 520x80 Dout 9’ >
4 —~ 1-PORT RAM 1| 4686
741 _{wn Addr RdEnf= \—
8 i 0
4664 #—={Din 520x80 Dout 7
—~| IPRTRAM | 4688
(18] lwiEn Addr RdEn]
B J
1666 #—>Din 570x80 Dout 7> —>
— Y, FPORTAAN | (4690
5321 _fwien Addr Rifnf< \—
A
1668 89' >IDin 520x80 Dout 89’ >
— 1-PORT RAM | 4692
1916 _fwin Addr RdEn —
80 :) 80
4652~ 4670 7—={Din 52080 Dout 7
\ =~ PR R | o 4604
10 e a0 (23:201 lwren Addr ReFnf=< —
Data In ack(2) {80 20 I 80
Replicate(4) 7—>{Din 500x80 Dout 7>—>
4672 1-PORT RAM 4696
4650 724 _|wen Addr Renl<H O
1674 89' Din 520x80 Dout 89’
~H——~ 1-PORT RAM (4698
BL28] _lwifn Addr Rfnf<"{ \—
1676 89' Din - 520x80 Dout 89'
@ IPORT RAN | 14,4700
4554.4570 86 WiEn Addr RdEn 0
1678 ,; Din1 5020Xgo Dout >
_PORT RAM 4702
39361, [witn Addr Rl
1680 89' >IDin 520x80 Dout 89’ >
~H—" 1-PORT RAM 4704
(43400 lwien gor Rebnl<ll "\
80 8)
=i 520480 Dout 7>
4654~ 4682—__—1" 1 oo R 7| 4706
LinebufW rEn 48 47441 lwien Addr Rdn \—
. 10]
LinehufAddr 2
7 N
LinebufRdEn — 1% 4656

\-4658

SHIFT

l

—

0 .
Linebufd4 Linebuft5

Linebut46 Linebufd7

10

FIG. 199

US 9,105,078 B2

Sheet 152 of 172

Aug. 11, 2015

U.S. Patent

00¢ Ol

| +U oXiq

U

| g

g

UG

U g

|40 o1

U g

60!

6107

67 0¢

6¢ 07

6705

6509

690L

6L

US 9,105,078 B2

Sheet 153 0of 172

Aug. 11, 2015

U.S. Patent

okl

U00R07

Ry

il

L0¢ Ol
[HBRHG | GARRNS | GHBRNG | pHBRNG | GHBRNY | THRN | RPN | UgRYg
Wl WU WU AU waun e Wl 103
¢ g (Mg (oM 0124 bl [PAg 81 1A (1Y 91 N
TEH Waun waun waun waun 13U RNy 103
Sl 1194 1N (19N | 1PN 0} P4 0[P%g el
Wau 03U e NET Waun eV WU waun
Y| 9PN | SRY | PRY | ERY | IR | LY | 0P
TET TET 03U NE) W 13Uy WU waun
001 6l 0 o 0t ot Oy o (5 65 09 69 0/ i

US 9,105,078 B2

Sheet 154 of 172

Aug. 11, 2015

U.S. Patent

UUonR0]

ZU0NR0]

| U0IR30]

[U0ReD0]

¢0¢ 9l
CHPRN | THRRMG | [HUENG | URXG | CHRRXG | Mg | Ry | U
HUZAN | AN | AU | LA | wgaw | ugau | wgaun | g
| L [P 01 1o 6 IoXd § g | LM 01 1oXg 0 1o¥g 8 INg
[HOZAU | AU | pRwgau | WU | wizaun W 3017 & &
Mg | 9PN | SR | RRMd | LG | ORM | PN | NG
[HOZAU | pAWgAUN | pRwgaun | wgau | wizaun & & L7 3u17
Pl | RN | IRt | ORMd | SRMd | TR | RN | O
JHOZAU | pAWZAUN | pRwgau | wgaun | wizaun 3017 7 3017 L7 3u17
60l ol 0 oC 0 ot 0y 6t (S 65 09 09 0. bl

US 9,105,078 B2

Sheet 155 of 172

Aug. 11, 2015

U.S. Patent

U007

71007

| UOE0T

(U007

£0¢ 9l
RN | VRN | PRERNG | WRNG | LM | wpng | LRl | W
CHUpAU | GHURRUT | 7aUpAU | ZHUPAUN | [RUpAU | [AWpau | Wl ETy
PO | PG | SPMd | BRMG | SPMd | BB | SPNG | pN
CHUBAUT | EHUBRUT | zaUpaun | pHUBAUT | [RUAU] | [spau | whaun W 3017
RO | RN | e | TRY | RN | T | e | M
CHUPRUT | CHUBOUT | 7aWpOU | THUBRU | [RURU | [sUpau | Whaun ETy
| OB | RN | 0P | UM | ORMd | IR | OPYg
CHUBAU | CHUPAUN | 7AW | pHUBAU | [RURUT | AU | Wpaun ETY
60l ol (T 6 0¢ ot (¥ oy (S 65 (9 69 0L 6L

US 9,105,078 B2

Sheet 156 of 172

Aug. 11, 2015

U.S. Patent

¥0¢ Ol
WIYS RIS > - fidwauppys
Aydwa noyys < P40 < Peof IRYs
0zLy—
P01l SR |
N M- -
g < xnjy| {0P0L10%69] q .
NP <focies] > <Xy
0P <Tores1 2 el b7 NN@T\/Aiiiimw:_v

US 9,105,078 B2

Sheet 157 of 172

Aug. 11, 2015

U.S. Patent

UFAAINGRUIT

8

ippycaun <« o

valy

GOZ¢ 9ld
| oLy —
N e 2P
Tduy) 8 iy
,,,,,, IED) 7l ippurt "My
UIN/IPPYI A ; | ,
IOV IMAYE DL INNOD QONYoT 3 jo pus
| i 2Giy—
7%2325 —
AI
wﬁ?\, SSNTING [« Wjng
A T
ZLEN gy
2l —" ol
A b
M — D3I U|Q
TV pAwone [forug
EQS?& Aow ““““ Aviu/E R U _Q
0Ly — ol

US 9,105,078 B2

Sheet 158 of 172

Aug. 11, 2015

U.S. Patent

989¥

907 9l
3@58» < HOLVHINGD s
|03 PIOOOA < AQ\ ,,,,,,,,,,,, JDIHINO
b3 ploo e NI
yomos | YWATYDILE [gre dasYaa
- / JEAIINN 0191 HUvaan
oy ONNOY Y 002p
az_o&f;ﬁf NOILYLNdWOD al
. N
T T T
N@@\\ bt iig iy
o7 YiRIadg
77 SEpey
: JORS3d
: CLAEL

US 9,105,078 B2

Sheet 159 of 172

Aug. 11, 2015

U.S. Patent

|
808p -
uawdesly L | 0] \\
BUINY 123] i)
auegdsgepeg, M | A [
s 3(0253)
v6LY AN MRS
a JaueNdg
_ %6.b o @e,,,,,,ﬂé. ,,,,,,,,,,,,,,,,
o N\ \ ‘ J : R
, 2601
ey IWSTF |, (D
)= Vx\ f Yl
86.Y TR
ww%\ X221n0g 0LLY
S eIpey 7
e YalEsalg

U.S. Patent Aug. 11, 2015 Sheet 160 of 172 US 9,105,078 B2

4820— {4832

4834
Linebu7.0] 800 Ey IR e
9 coefiB 16 2
1840, Epll) & p7 10
S 26
> coeff7 16 %
4840, Epll & tep 1)
g 26
3 coeff6 16 %
4840, E 10 . tep910
26
6 coeffH 16
4840, EQ él feph 19, g
. ™ 2, |=
J coeff4 16 -
1840, By él t2p3 19 =
™ 26
0 coeff3 16
48410, = 10 & f2p2 1)
6 “ e 16 2 vscale
4840, 51,)&' tapl 19 " 1842
— 5 coeffl 16
18110, EWLI, tep01(
™ 26
E_gg?g____ﬁgﬁ cogfi0 16, ||
=l §.§.§§.§%I§§ ol o en
SEEEEEEEE &) s r
2|=| 2| 2| =l 2| N=|<=
4822 Coefficient RAM | | —- vscale rd
n 1696 FIFO Tonle \ i Contoll_ g
/ 4828~ 12)(4 w|| | “-a830
4538 4826~ FR~
e] B FIG. 208
et — | 51t i J——
' =l2|8| 4824 Sl=|E _1‘}T4_> mem_ maxine
ycoord_reqT — T mem_ minling
ypointer =32 mem_ xaddr
yphase des Control and Memory Read Request Generator % mem_ rde
yeoord_eol — — mem_ eof

yooord_eaf —

e—————— mem_gnt

U.S. Patent Aug. 11, 2015 Sheet 161 of 172 US 9,105,078 B2

y

[—]
26 2%
ERER
].0"]_ 10‘I 1
5036-\/ -
r’ f
. : < 10,
o 2 A =
\ E
' <
Coun Wit 5 Decote] [Coeicnt)
144
5034—" | 5032—"
i1 ,
5026 o %I
end of line &
din_rdy
o Contral 2022
dout_rdy
o2 xpointer 14,
Q\5028
xcoord_req .
Xpointerin ”eXtt_Xp(:nter |
. next ¥phase e 3
Xphasein 1
d\5030

FIG. 209

U.S. Patent Aug. 11, 2015 Sheet 162 of 172 US 9,105,078 B2

7t 5038\ 5140

101
5136-\/ Conlext Extension Mux \<
5137 } } } }
cr_seI\—ﬁ/Mux MU= MUX =g MU= Mux =7 Mux ==y Muxp==7 Mux\—=7 Mux
5120 1010 104410 10440 10} 410 1010 10f410 104410 103410 104410
e kg At
o i o F— H e e e - H— =
5121 N N N N N e
N>
or_pipe_en—en —{en —en—{en—{en—{en—en e —gn
b =
En in/cr,—5124 2
a i 2B) (oo
g 5134— | 5132~
113 2|87
5126%@_
end of ling &
din_rdy — 5122
din_req Control —»CT_SG|
C dout_rdy
4600 1 | xpointer 13,
E'N— 5128
xcoord req :
Xpointerin ne)gt_xp%lnter
phasin —— or NPT] wplese 3

= FIG. 210

US 9,105,078 B2

Sheet 163 0of 172

Aug. 11, 2015

U.S. Patent

el¢ Old 0T/ T
810V 0207 — NG-0T/ 8 1990A
7 NOILNI0S3Y
_. nowonazy | | [NOUSEO Tz ivios
ISION YWOMHO | 2 ’ / 43S
01N E omn | | omM1anos | o
vcov T NOILN10S3Y
9107 -~/
’ 0T/ 7T
8107 —~ 0207 — NOILONA3Y NG-0T/ 8 $090A
ISION YINOHHD Z NOILNI0%3Y
NOLLOFHAOI} —~ 1ya) yinmoy Y
S g NOILHOLSIJ = 7 4ITY0S AN
ot | | 014LIN03D | grn
T NOILN10S3Y
9107~/
112 9l 0TV / TTY
8T07— 0207 — NG-01/ 8 1990A
ISR Z NOILN1053Y
! | NOILYOLSI b mwﬂﬁ%m
oth JMMLIN0ID | 01N NOILONAIY
3ISION YWONHD T NOILN10S34
9107 -/ -

US 9,105,078 B2

Sheet 164 of 172

Aug. 11, 2015

U.S. Patent

(¢'C'v HO 0'¢')
1Nd1N0 43/ 90

91¢ Ol

v1¢ Ol

43114 YINOHHO

A3dINO—3ONYNIANT

G1¢ Ol

SR

I 0 1

I 1 1
- 120

(C'¢r ¥0 0°¢)

2916 ~/

13749

F1dNVYSENS

0976 —"

U.S. Patent

Aug. 11, 2015 Sheet 165 of 172

US 9,105,078 B2

GET NOISE THRESHOLD

| — 5170

TEST FIRST FILTER PIXEL

| — 5172

COMPUTE DIFFERENCE
BETWEEN INPUT PIXEL AND
FILTER PIXEL

(ACb, ACr AY)

| —b174

SCALE ACb, ACr, AND AY

| — 5176

TOTAL ACb, ACr, AND /OR AY (ATOT)

| — 5178

FILTER
COEF=1
AND
ATOT < NOISE
THRESHOLD
?

YES

5184
/

ADD ACb TO NUMERATOR
AND ADD 1 TO DENOMINATOR

TEST NEXT |__NO i)
FILTER PIXEL TESTED

?

(TO 5190)

FIG. 217

5162

U.S. Patent Aug. 11, 2015

(FROM 5186)

5190

DENOMINATOR
N YES

Sheet 166 of 172

MINIMUM
COUNT

5194

SMALL

COUNT NO

QUTPUT Cb COMPONENT
OF PIXEL EQUAL TO
Ch+ —NUMERATOR

DENOMINATOR

5192J

ALTERNATIVE FILTER
SET
?

YES

OUTPUT OF Cb COMPONENT OF

Cb VALUE OF 3X3
NEIGHBORHOOD

FIG. 218

OUTPUT Cb COMPONENT
OF PIXEL UNCHANGED

PIXEL EQUAL TO AVERAGE L—— 5193

)

5196

US 9,105,078 B2

U.S. Patent Aug. 11, 2015 Sheet 167 of 172 US 9,105,078 B2

5210 \

GET INPUT NOISE STANDARD DEVIATION | 5919
USING 2D LUT

COMPUTE RADIUS FROM ——5214
OPTICAL CENTER

GET RADIAL GAIN FROM LUT — 5216

APPLY RADIAL GAIN TO INPUT L —5218
NOISE STANDARD DEVIATION

OUTPUT NOISE THRESHOLD 5220

FIG. 219

U.S. Patent Aug. 11, 2015 Sheet 168 of 172 US 9,105,078 B2

4618 —

1617 —— 4614

4616 —"

FIG. 220

U.S. Patent Aug. 11, 2015 Sheet 169 of 172 US 9,105,078 B2

5250
/.

DETERMINE Y COORDINATE
CORRESPONDING TO)
CORRECTED OUTPUT PIXEL

f

RESAMPLE PIXEL AT
DETERMINED COORDINATE
TO OBTAIN VERTICALLY [~ 5254

GEOMETRICALLY CORRECTED
OUTPUT PIXEL

DETERMINE X COORDINATE
IN INPUT FRAME —
CORRESPONDING TO 5256
CORRECTED QUTPUT PIXEL

RESAMPLE PIXEL AT
DETERMINED COORDINATE
TO OBTAIN VERTICALLY b~ 5258

AND HORIZONTALLY

GEOMETRICALLY CORRECTED
OUT PIXEL

FIG. 221

US 9,105,078 B2

Sheet 170 of 172

Aug. 11, 2015

U.S. Patent

¢ 9l4
C0ES —Y1vg Taxid Lia—7Z1 aanois 4 b 7088
006 —"
2925 — |
NNN mv_h* v@mmlﬁ G/ v/ €/¢/1/ 0301418180 \..Iﬁ@mm
S S ZISaINIoY ¥/ TISAINIOV\ T €/ OISGIAILDY
7525 2575~ 1925 2529
T 4 7 T
277 A
%7) L — 0925
ox [T 7% 7 B w111 Z =l
i/ mzwwwwwg\ VN N\ G/ ¥/ ELHDIAHOYS
W rrrrrrrstlrrrsrrssdtirsrrrirriN PR
L N\\ LS \N\\\\\\\\\ 1T L
%7 7% 2/ 1/ OLHOIFHOYS
¢/ 1/ OIHIISHLS Z TR 77 B T 77
9926 —1 77 77 0925
Y \\ \ A Y
B me T &7 CRIGES sobe FTE/ORIOWONS e &
YA ZATI
0525 —" =7 B 7 E7 2/ T/ AL -
9525

US 9,105,078 B2

Sheet 171 of 172

Aug. 11, 2015

U.S. Patent

e

U.S. Patent Aug. 11, 2015 Sheet 172 of 172 US 9,105,078 B2

5404~ I
\ yA—
5402 5402

STANDARD
DEVIATION
X
X
X

PIXEL INTENSITY

FIG. 227

US 9,105,078 B2

1
SYSTEMS AND METHODS FOR LOCAL
TONE MAPPING

CROSS-REFERENCE TO RELATED
APPLICATIONS

The following applications, all filed on May 31, 2012, are
related: “Systems and Methods for Temporally Filtering
Image Data,”, U.S. application Ser. No. 13/484,721; “Local
Image Statistics Collection,”, U.S. application Ser. No.
13/484,741; “Systems and Methods for RGB Image Process-
ing,”, U.S. application Ser. No. 13/484,484; “Image Signal
Processing Involving Geometric Distortion Correction,”,
U.S. application Ser. No. 13/484,842; “Systems and Methods
for YCC Image Processing,”, U.S. application Ser. No.
13/484,926; “Systems and Methods for Chroma Noise
Reduction,”, U.S. application Ser. No. 14/484,991; “Systems
and Methods for Local Tone Mapping,”, U.S. application Ser.
No. 13/485,421; “Raw Scaler with Chromatic Aberration
Correction,”, U.S. application Ser. No. 13/485,024; “Systems
and Methods for Raw Image Processing,”, U.S. application
Ser. No. 13/485,056; “Systems and Methods for Reducing
Fixed Pattern Noise in Image Data,”, U.S. application Ser.
No. 13/485,101; “Systems and Methods for Collecting Fixed
Pattern Noise Statistics of Image Data,”, U.S. application Ser.
No. 13/485,124; “Systems and Methods for Highlight Recov-
ery in an Image Signal Processor,”, U.S. application Ser. No.
13/485,199; “Systems and Methods for Lens Shading Cor-
rection,”, U.S. application Ser. No. 13/485,235; “Systems and
Methods for Determining Noise Statistics of Image Data,”,
U.S. application Ser. No. 13/485,299; and “Systems and
Methods for Luma Sharpening,”’, U.S. application Ser. No.
13/485,341. These applications are incorporated by reference
herein in their entirety.

BACKGROUND

The present disclosure relates generally to digital imaging
and, more particularly, to processing image data with image
signal processor logic.

This section is intended to introduce the reader to various
aspects of art that may be related to various aspects of the
present techniques, which are described and/or claimed
below. This discussion is believed to be helpful in providing
the reader with background information to facilitate a better
understanding of the various aspects of the present disclosure.
Accordingly, it should be understood that these statements are
to be read in this light, and not as admissions of prior art.

Digital imaging devices appear in handheld devices, com-
puters, digital cameras, and a variety of other electronic
devices. Once a digital imaging device acquires an image, an
image processing pipeline may apply a number of image
processing operations to generate a full color, processed
image. Although conventional image processing techniques
aim to produce a polished image, these techniques may not
adequately address many image distortions and errors intro-
duced by components of the imaging device. For example,
defective pixels on the image sensor may produce image
artifacts. Lens imperfections may produce an image with
non-uniform light intensity. Sensor imperfections arising
during manufacture may produce specific patterns of noise on
different sensors. Furthermore, sensors from different ven-
dors may reproduce color in perceptibly different ways.

Some conventional image processing techniques may also
be relatively inefficient. In one example, certain operational
blocks may spread distortions and errors to other areas of the
image. In another example, lookup tables may be repeatedly

10

15

20

25

30

35

40

45

50

55

60

65

2

loaded into local buffers from memory to process new image
frames from different imaging devices. In addition, many
conventional image processing techniques may cause image
information to be lost during certain operations. For example,
some operations may cause a pixel to be gained beyond a level
that can be tracked in conventional image signal processors,
resulting in an image with at least some pixels that have been
arbitrarily clipped. Other operations may inaccurately repro-
duce some colors when one of the color channels has reached
a maximum intensity. Still others may cause black level
noise—noise occurring even when no light reaches the sen-
sor—to be misconstrued as noise occurring only in a positive
direction, producing gray-tinged black regions that should be
completely black. Moreover, in some situations, images with
high global contrast may have image information lost in
shadows or obscured by highlights when global contrast
operations are performed.

Other conventional image processing techniques may
include image demosaicing and sharpening. Conventional
demosaicing techniques, however, may not adequately
account for the locations and direction of edges within the
image, resulting in edge artifacts such as aliasing, checker-
board artifacts, or rainbow artifacts. Similarly, conventional
sharpening techniques may not adequately account for exist-
ing noise in the image signal, or may be unable to distinguish
the noise from edges and textured areas in the image.

SUMMARY

A summary of certain embodiments disclosed herein is set
forth below. It should be understood that these aspects are
presented merely to provide the reader with a brief summary
of these certain embodiments and that these aspects are not
intended to limit the scope of this disclosure. Indeed, this
disclosure may encompass a variety of aspects that may not
be set forth below.

Systems and methods for local tone mapping are provided.
In one example, an electronic device includes an electronic
display, an imaging device, and an image signal processor.
The electronic display may display images of a first bit depth,
and the imaging device may include an image sensor that
obtains image data of a higher bit depth than the first bit depth.
The image signal processor may process the image data, and
may include local tone mapping logic that may apply a spa-
tially varying local tone curve to a pixel of the image data to
preserve local contrast when displayed on the display. The
local tone mapping logic may smooth the local tone curve
applied to the intensity difference between the pixel and
another nearby pixel exceeds a threshold.

Various refinements of the features noted above may exist
in relation to various aspects of the present disclosure. Further
features may also be incorporated in these various aspects as
well. These refinements and additional features may exist
individually or in any combination. For instance, various
features discussed below in relation to one or more of the
illustrated embodiments may be incorporated into any of the
above-described aspects of the present disclosure alone or in
any combination. The brief summary presented above is
intended only to familiarize the reader with certain aspects
and contexts of embodiments of the present disclosure with-
out limitation to the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of this disclosure may be better understood
upon reading the following detailed description and upon
reference to the drawings in which:

US 9,105,078 B2

3

FIG. 1 is a simplified block diagram of components of an
electronic device with imaging device(s) and image process-
ing circuitry that may perform image processing, in accor-
dance with an embodiment;

FIG. 2 shows a graphical representation of a 2x2 pixel
block of a Bayer color filter array that may be implemented in
the imaging device of FIG. 1;

FIG. 3 isaperspective view of the electronic device of FIG.
1 in the form of a notebook computing device, in accordance
with an embodiment;

FIG. 4 is a front view of the electronic device of FIG. 1 in
the form of a desktop computing device, in accordance with
an embodiment;

FIG. 5 is a front view of the electronic device of FIG. 1 in
the form of a handheld portable electronic device, in accor-
dance with an embodiment;

FIG. 6 is aback view of the electronic device shown in FIG.
3;

FIG. 7 is a block diagram of the image processing circuitry
and imaging device(s) of FIG. 1, in accordance with an
embodiment;

FIG. 8 is a block diagram of an example of the image
processing circuitry of FIG. 1, including statistics logic, a
raw-format processing block, an RGB-format processing
block, and a YCC-format processing block, in accordance
with an embodiment;

FIG. 9 is flowchart depicting a method for processing
image data in the ISP pipe processing logic 80 logic of FIG.
10, in accordance with an embodiment;

FIG. 10 is block diagram illustrating a configuration of
double buffered registers and control registers that may be
used for processing image data in the ISP pipe processing
logic 80 logic, in accordance with an embodiment;

FIGS. 11-13 are timing diagrams depicting different
modes for triggering the processing of an image frame, in
accordance with an embodiment;

FIGS. 14 and 15 are diagrams depicting control registers in
more detail, in accordance with an embodiment;

FIG. 16 is a flowchart depicting a method for using a
front-end pixel processing unit to process image frames when
the ISP pipe processing logic 80 logic of FIG. 10 is operating
in a single sensor mode;

FIG. 17 is a flowchart depicting a method for using a
front-end pixel processing unit to process image frames when
the ISP pipe processing logic 80 logic of FIG. 10 is operating
in a dual sensor mode;

FIG. 18 is a flowchart depicting a method for using a
front-end pixel processing unit to process image frames when
the ISP pipe processing logic 80 logic of FIG. 10 is operating
in a dual sensor mode;

FIG. 19 is a flowchart depicting a method in which both
image sensors are active, but wherein a first image sensor is
sending image frames to a front-end pixel processing unit,
while the second image sensor is sending image frames to a
statistics processing unit so that imaging statistics for the
second sensor are immediately available when the second
image sensor continues sending image frames to the front-
end pixel processing unit at a later time, in accordance with an
embodiment.

FIG. 20 is a graphical depiction of a linear memory
addressing format that may be applied to pixel formats stored
in a memory of the electronic device of FIG. 1, in accordance
with an embodiment;

FIG. 21 is graphical depiction of various imaging regions
that may be defined within a source image frame captured by
an image sensor, in accordance with an embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 22 is a graphical depiction of a technique for using the
ISP pipe processing logic 80 processing unit to process over-
lapping vertical stripes of an image frame;

FIG. 23 is a diagram depicting how byte swapping may be
applied to incoming image pixel data from memory using a
swap code, in accordance with an embodiment;

FIG. 24 shows an example of how to determine a frame
location in memory in a linear addressing format, in accor-
dance with an embodiment;

FIGS. 25-28 show examples of memory formats for raw
image data that may be supported by the image processing
circuitry of FIG. 7 or FIG. 8, in accordance with an embodi-
ment;

FIGS. 29-34 show examples of memory formats for full-
color RGB image data that may be supported by the image
processing circuitry of FIG. 7 or FIG. 8, in accordance with an
embodiment;

FIGS. 35-39 show examples of memory formats for luma/
chroma image data (YUV/YC1C2) that may be supported by
the image processing circuitry of FIG. 7 or FIG. 8, in accor-
dance with an embodiment;

FIG. 40 is a flowchart describing a method for processing
image data using signed image data, in accordance with an
embodiment;

FIG. 41 is a schematic illustration of scaling pixels of
various bit-depths to a common unsigned 16-bit format, in
accordance with an embodiment;

FIG. 42 is a flowchart describing embodiments of a method
for converting unsigned 16-bit pixels into signed 17-bit pixels
for processing using the ISP pipe processing logic of FIG. 8,
in accordance with an embodiment;

FIG. 43 is a flowchart describing embodiments of a method
for converting signed 17-bit pixels from the ISP pipe process-
ing logic of FIG. 8 into 16-bit pixels for storage in memory, in
accordance with an embodiment;

FIG. 44 is a block diagram of the ISP circuitry of FIG. 8
depicting how overflow handling may be performed, in accor-
dance with an embodiment;

FIG. 45 is a flowchart depicting a method for overflow
handling when an overflow condition occurs while image
pixel data is being read from picture memory, in accordance
with an embodiment;

FIG. 46 is a flowchart depicting a method for overflow
handling when an overflow condition occurs while image
pixel data is being read in from an image sensor interface, in
accordance with an embodiment;

FIG. 47 is a flowchart depicting another method for over-
flow handling when an overflow condition occurs while
image pixel data is being read in from an image sensor inter-
face, in accordance with an embodiment;

FIG. 48 is more a more detailed block diagram showing
embodiments of statistics processing logic that may be imple-
mented in the ISP pipe processing logic, as shown in FIG. 8,
in accordance with an embodiment;

FIG. 49 is a block diagram of sensor linearization logic that
may be employed by the statistics processing logic of the ISP
pipe processing logic, in accordance with an embodiment;

FIG. 50 is a block diagram illustrating sensor linearization
lookup tables (LUTs) employed by the sensor linearization
logic, in accordance with an embodiment;

FIG. 51 is a flowchart describing a method for linearizing
image data from a sensor using the sensor linearization logic,
in accordance with an embodiment;

FIG. 52 shows various image frame boundary cases that
may be considered when applying techniques for detecting

US 9,105,078 B2

5

and correcting defective pixels during statistics processing by
the statistics processing unit of FI1G. 48, in accordance with an
embodiment;

FIG. 53 is a flowchart illustrating a process for performing
defective pixel detection and correction during statistics pro-
cessing, in accordance with an embodiment;

FIG. 54 shows a three-dimensional profile depicting light
intensity versus pixel position for a conventional lens of an
imaging device;

FIG. 55 is a colored drawing that exhibits non-uniform
light intensity across the image, which may be the result of
lens shading irregularities;

FIG. 56 is a graphical illustration of a raw imaging frame
that includes a lens shading correction region and a gain grid,
in accordance with an embodiment;

FIG. 57 illustrates the interpolation of a gain value for an
image pixel enclosed by four bordering grid gain points, in
accordance with an embodiment;

FIG. 58 is a flowchart illustrating a process for determining
interpolated gain values that may be applied to imaging pixels
during a lens shading correction operation, in accordance
with an embodiment;

FIG. 59 is a three-dimensional profile depicting interpo-
lated gain values that may be applied to an image that exhibits
the light intensity characteristics shown in FIG. 54 when
performing lens shading correction, in accordance with an
embodiment;

FIG. 60 shows the colored drawing from FIG. 55 that
exhibits improved uniformity in light intensity after a lens
shading correction operation is applied, in accordance with
accordance aspects of the present disclosure;

FIG. 61 graphically illustrates how a radial distance
between a current pixel and the center of an image may be
calculated and used to determine a radial gain component for
lens shading correction, in accordance with an embodiment;

FIG. 62 is a flowchart illustrating a process by which radial
gains and interpolated gains from a gain grid are used to
determine a total gain that may be applied to imaging pixels
during a lens shading correction operation, in accordance
with an embodiment;

FIG. 63 is a graph showing white areas and low and high
color temperature axes in a color space;

FIG. 64 is a table showing how white balance gains may be
configured for various reference illuminant conditions, in
accordance with an embodiment;

FIG. 65 is a block diagram showing a statistics collection
engine that may be implemented in the ISP pipe processing
logic 80 processing logic, in accordance with an embodiment;

FIG. 66 illustrates the down-sampling of raw Bayer RGB
data, in accordance with an embodiment;

FIG. 67 depicts a two-dimensional color histogram that
may be collected by the statistics collection engine of FIG. 65,
in accordance with an embodiment;

FIG. 68 depicts zooming and panning within a two-dimen-
sional color histogram;

FIG. 69 is a more detailed view showing logic for imple-
menting a pixel filter of the statistics collection engine, in
accordance with an embodiment;

FIG. 70 is a graphical depiction of how the location of a
pixel within a C1-C2 color space may be evaluated based on
a pixel condition defined for a pixel filter, in accordance with
an embodiment;

FIG. 71 is a graphical depiction of how the location of a
pixel within a C1-C2 color space may be evaluated based on
a pixel condition defined for a pixel filter, in accordance with
another embodiment;

10

25

40

45

55

6

FIG. 72 is a graphical depiction of how the location of a
pixel within a C1-C2 color space may be evaluated based on
apixel condition defined for a pixel filter, in accordance with
yet a further embodiment;

FIG. 73 is a graph showing how image sensor integration
times may be determined to compensate for flicker, in accor-
dance with an embodiment;

FIG. 74 is a detailed block diagram showing logic that may
be implemented in the statistics collection engine of FIG. 65
and configured to collect auto-focus statistics in accordance
with an embodiment;

FIG. 75 is a graph depicting a technique for performing
auto-focus using coarse and fine auto-focus scoring values, in
accordance with an embodiment;

FIG. 76 is a flowchart depicting a process for performing
auto-focus using coarse and fine auto-focus scoring values, in
accordance with an embodiment;

FIGS. 77 and 78 show the decimation of raw Bayer data to
obtain a white balanced luma value;

FIG. 79 shows a technique for performing auto-focus using
relative auto-focus scoring values for each color component,
in accordance with an embodiment;

FIG. 80 is a flowchart depicting a process for calculating
fixed pattern noise statistics, in accordance with an embodi-
ment;

FIG. 81 is a flowchart depicting a process for calculating
fixed pattern noise statistics by dividing an input image into
horizontal strips of the input image, in accordance with an
embodiment;

FIG. 82A is a graphical depiction of how fixed pattern
noise statistics is accumulated using a diagonal orientation, in
accordance with an embodiment;

FIG. 82B is a graphical depiction of how fixed pattern noise
statistics is accumulated using a column sum accumulation
process within horizontal strips of the input image, in accor-
dance with an embodiment;

FIG. 82C is a graphical depiction of how fixed pattern noise
statistics is accumulated using a row sum accumulation pro-
cess within horizontal strips of the input image, in accordance
with an embodiment;

FIG. 83 is a block diagram of'local image statistics logic of
the statistics logic of the ISP pipe processing logic, which
may collect statistics used in local tone mapping and/or high-
light recovery, in accordance with an embodiment;

FIGS. 84 and 85 are block diagrams of luminance compu-
tation logic of the local image statistics logic, in accordance
with an embodiment;

FIG. 86 is a block diagram of thumbnail generation logic of
the local image statistics logic, in accordance with an embodi-
ment;

FIG. 87 is a block diagram of local histogram generation
logic of the local image statistics logic, in accordance with an
embodiment;

FIG. 88 is an illustration of a first memory format for
thumbnails generated by the local image statistics logic, in
accordance with an embodiment;

FIG. 89 is an illustration of a second memory format for
thumbnails generated by the local image statistics logic, in
accordance with an embodiment;

FIG. 90 is an illustration of a memory format for local
histograms generated by the local image statistics logic, in
accordance with an embodiment;

FIG. 91 is a block diagram of a raw processor block and
imaging device(s) of FIG. 1, in accordance with an embodi-
ment;

US 9,105,078 B2

7

FIG. 92 is an illustration of a memory format for a fixed
pattern noise frame generated by the fixed pattern noise
reduction (FPNR) logic, in accordance with an embodiment;

FIG. 93 is a flow diagram illustrating a fixed pattern noise
reduction process, in accordance with an embodiment;

FIG. 94 is a flow diagram illustrating a fixed pattern noise
reduction process using global offsets, in accordance with an
embodiment;

FIG. 95 is a flow diagram illustrating an embodiment of a
temporal filtering process performed by the raw processor
block shown in FIG. 91, in accordance with an embodiment;

FIG. 96 illustrates a set of reference image pixels and a set
of corresponding image pixels that may be used to determine
one or more parameters for the temporal filtering process of
FIG. 95, in accordance with an embodiment;

FIG.97A and FIG. 97B illustrate two examples of a motion
table being divided according to a number of brightness levels
that may be used to determine one or more parameters for the
temporal filtering process of FIG. 95, in accordance with an
embodiment;

FIG. 98 is a flow diagram illustrating a more detailed
description of a block in the flow diagram of FIG. 10, in
accordance with one embodiment;

FIG. 99 is a process diagram illustrating how temporal
filtering may be applied to image pixel data received by the
raw processor shown in FIG. 91, in accordance with one
embodiment.

FIG. 100 shows various image frame boundary cases that
may be considered when applying techniques for detecting
and correcting defective pixels during processing by the raw
processing block shown in FIG. 91, in accordance with an
embodiment;

FIG. 101 shows various pixel correction coefficients that
may be considered when applying techniques for detecting
and correcting defective pixels during processing by the raw
processing block shown in FIG. 91, in accordance with an
embodiment;

FIGS.102-104 are flowcharts that depict various processes
for detecting and correcting defective pixels that may be
performed in the raw pixel processing block of FIG. 99, in
accordance with an embodiment;

FIG. 105 is a flow diagram depicting a process for calcu-
lating noise statistics, in accordance with an embodiment;

FIG. 106 shows various gradients that may be considered
when applying techniques for calculating noise statistics dur-
ing processing by the raw processing block shown in FIG. 91,
in accordance with an embodiment;

FIG. 107 is an illustration of a memory format for the noise
statistics, in accordance with an embodiment;

FIG. 108 is an illustration of a 7x7 block of same-colored
pixels on which spatial noise filtering may be applied;

FIG. 109 illustrates a high level process overview of the
spatial noise filtering process, in accordance with an embodi-
ment;

FIG. 110 illustrates a process for determining an attenua-
tion factor for each filter tap of the SNF logic;

FIG. 111 is an illustration of a determination of a radial
distance as the distance between a center point of an image
frame and the current input pixel, in accordance with an
embodiment;

FIG. 112 is a flowchart illustrating a process to determine
aradial gain to be applied to the inverse noise standard devia-
tion value determined by the attenuation factor determination
process, in accordance with an embodiment;

FIG. 113 is a flowchart illustrating a process for determin-
ing an interpolated green value for the input pixel, in accor-
dance with an embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 114 illustrates an example of how pixel absolute
difference values may be determined when the SNF logic
operates in a non-local means mode in applying spatial noise
filtering to the 7x7 block of pixels of FIG. 108;

FIG. 115 illustrates an example of the SNF logic config-
ured to operate in a three-dimensional mode, in accordance
with an embodiment;

FIG. 116 is a flowchart illustrating a process for three-
dimensional spatial noise filtering, in accordance with an
embodiment;

FIG. 117 is a block diagram illustrating a process path for
pixel data in the ISP pipe, in accordance with an embodiment;

FIG. 118 illustrates examples of various combinations of
pixels with missing color samples;

FIG. 119 is a flowchart illustrating a process for computing
clip levels and normalizing pixel values for a highlight recov-
ery process, in accordance with an embodiment;

FIG. 120 is a flowchart illustrating a highlight recovery
process, in accordance with an embodiment;

FIG. 121 is a full resolution sample of Bayer image data;

FIG. 122 is an example of the raw scaler logic applying 2x2
binning to the full resolution raw image data;

FIG. 123 is are-sampled portion of binned image data after
being processed by the raw scaler circuitry;

FIG. 124 is a block diagram of the raw scaler circuitry, in
accordance with one embodiment;

FIG. 125 is a graphical depiction of input pixel locations
and corresponding output pixel locations based on various
DDAStep values;

FIG. 126 is a flow chart depicting a method for applying
binning compensation filtering to image data received by the
front-end pixel processing unit 130 in accordance with an
embodiment;

FIG. 127 is a flow chart depicting the step for determining
currPixel from the method of FIG. 126, in accordance with
one embodiment;

FIG. 128 is the step for determining currlndex from the
method of FIG. 126, in accordance with one embodiment;

FIG. 129 is an illustration of typical distortion curves for
red, green, and blue color channels;

FIG. 130 is an illustration of a 1920x1080 resolution RAW
frame that simulates the lens distortion of FIG. 129

FIG. 131 is an image, illustrating the results of applying
demosaic logic to a frame with chromatic aberrations;

FIG. 132 is a graph illustrating the relative distortion for
chromatic aberration correction;

FIG. 133 is a simulated image where chromatic aberrations
are removed prior to demosaicing the image;

FIG. 134 is a block diagram of the raw scaler circuitry
1652, in accordance with an embodiment;

FIG. 135 is a block diagram illustrating the vertical resa-
mpler coordinate generator, in accordance with an embodi-
ment;

FIG. 136 is a block diagram illustrating the vertical dis-
placement computation, in accordance with an embodiment;

FIG. 137 is a block diagram illustrating the vertical sensor
to component coordinate translation logic, in accordance
with an embodiment;

FIG. 138 is an illustration of the green output samples
aligning with the green input samples since there is no vertical
scaling or binning compensation;

FIG. 139 is a diagram illustrating that if the Chromatic
Aberration were a linear function of the radius, the offsets
between red and green and between blue and green would be
constant for each output line, but decreasing to zero near the
vertical center of the frame;

US 9,105,078 B2

9

FIG. 140 is a chart depicting vertical offsets from the green
channel;

FIG. 141 is a block diagram illustrating one embodiment of
the horizontal resampler coordinate generator, in accordance
with an embodiment;

FIG. 142 is a block diagram illustrating the horizontal
displacement computation logic, in accordance with an
embodiment;

FIG. 143 is a block diagram illustrating the horizontal
sensor to component coordinate translation logic, in accor-
dance with an embodiment;

FIG. 144 is a diagram illustrating that since there is no
horizontal scaling or binning compensation, the green output
samples are aligned with the green input samples;

FIG. 145 is a diagram that illustrates the offset for the blue
channel decreasing by 2

FIG. 146 is a diagram that illustrates the maximum offset
between the vertical position of the center tap on the red (and
blue) component and the corresponding green component;

FIG. 147 is a block diagram of RGB-format processing
logic of the ISP pipe processing logic of FIG. 8, in accordance
with an embodiment;

FIG. 148 is a graphical process flow that provides a general
overview as to how demosaicing may be applied to a raw
Bayer image pattern to produce a full color RGB;

FIG. 149 is a diagram that illustrates a 2x2 pixel grid
configured in a Bayer CFA pattern, in accordance with an
embodiment;

FIG. 150 is a diagram that illustrates the computation of the
Eh and Ev values for a red pixel centered in the 5x5 pixel
block at location (j, 1), wherein j corresponds to a row and i
corresponds to a column, in accordance with an embodiment;

FIG. 151 is a diagram that illustrates the computation of Eh
and Ev values for a Gr pixel, however, the same filter may be
applied on any interpolated red or blue pixel, in accordance
with an embodiment;

FIG. 152 is an example of horizontal interpolation for
determining Gh, in accordance with one embodiment;

FIG. 153 is five vertical pixels (RO, G1, R2, G3, and R4) of
ared column of the Bayer image and their respective filtering
coefficients, in accordance with an embodiment;

FIG. 154 is a block diagram illustrating filter coefficients
useful for computing the GNU correction amount, in accor-
dance with an embodiment;

FIG. 155 is a block diagram illustrating a definition of local
green gradient filters, in accordance with embodiments;

FIG. 156 is a block diagram in illustrating vertical and
horizontal red/blue gradient filters, in accordance with an
embodiment

FIG. 157 is a diagram that illustrates a summary of the
green interpolation on both red and blue pixels;

FIG. 158 is a diagram that illustrates various 3x3 blocks of
the Bayer image pattern to which red and blue demosaicing
may be applied, as well as interpolated green values (desig-
nated by G') that may have been obtained during demosaicing
on the green channel, in accordance with an embodiment;

FIG. 159 is a block diagram that depicts the determination
of which color components are to be interpolated for a given
input pixel P, in accordance with an embodiment;

FIG. 160 is a flow chart illustrating a process for interpo-
lating a green value, in accordance with an embodiment;

FIG. 161 is a flow chart illustrating a process for interpo-
lating a red value, in accordance with an embodiment;

FIG. 162 is a flow chart illustrating a process for interpo-
lating a blue value, in accordance with an embodiment;

15

20

25

40

45

10

FIG. 163 depicts an example of an original image scene,
which may be captured by the image sensor of the imaging
device;

FIG. 164 is a raw Bayer image which may represent the raw
pixel data captured by the image sensor;

FIG. 165 is an RGB image reconstructed using conven-
tional demosaicing techniques, and may include artifacts,
such as “checkerboard” artifacts at the edge;

FIG. 166 is an example of an image reconstructed using the
demosaicing techniques, in accordance with an embodiment;

FIG. 167 is a simplified image of a scene with a bright area
and a dark area, over which a first global gain has been applied
that causes the bright area to be washed out, in accordance
with an embodiment;

FIG. 168 is a simplified image of the scene with the bright
area and the dark area, over which a second global gain has
been applied that causes the dark area to be obscured, in
accordance with an embodiment;

FIG. 169 is a simplified tone map of the scene of FIGS. 167
and 168, which relates local gains to the bright area and the
dark area to preserve both highlight and dark image informa-
tion, in accordance with an embodiment;

FIG. 170 is a simplified image of the scene of FIGS. 167
and 168, over which local gains have been applied using the
tone map of FIG. 169, thereby preserving both highlight and
dark image information, in accordance with an embodiment;

FIG. 171 is a block diagram representing an example of
local tone mapping logic of the RGB-format processing logic
of FIG. 147, in accordance with an embodiment;

FIG. 172 is a schematic diagram of a local tone map grid of
a spatially varying lookup table of the local tone mapping
logic of FIG. 171, in accordance with an embodiment;

FIG. 173 is an illustration of 2D interpolation to obtain
values from the local tone map grid of FIG. 172, in accor-
dance with an embodiment;

FIG. 174 is a block diagram of gain computation logic of
the local tone mapping logic of FIG. 171, in accordance with
an embodiment;

FIG. 175 is a plot representing a box function used in the
gain computation logic of FIG. 174, in accordance with an
embodiment;

FIG. 176 is a diagram of a 9Hx1V group of pixels filtered
through a bilateral filter using the box function of FIG. 175, in
accordance with an embodiment;

FIG. 177 is a block diagram of pin-to-white logic of the
local tone mapping logic of FIG. 171, in accordance with an
embodiment;

FIGS. 178-180 are memory format diagrams respectively
representing memory formats for a spatially varying color
correction matrix (CCM), the spatially varying local tone
map lookup table, and both together, in accordance with an
embodiment;

FIG. 181 is a block diagram of color correction logic using
a 3D color lookup table, in accordance with an embodiment;

FIG. 182 is a diagram illustrating tetrahedral interpolation
of'values in the 3D color lookup table, in accordance with an
embodiment;

FIG. 183 is a block diagram of YCC (e.g., YCbCr) process-
ing logic of the ISP pipe processing logic of FIG. 8, in accor-
dance with an embodiment;

FIG. 184 is a block diagram of luma sharpening logic of the
YCC processing logic of FIG. 183, in accordance with an
embodiment;

FIG. 185 is a block diagram of dot detection logic of the
luma sharpening logic of FIG. 184, in accordance with an
embodiment;

US 9,105,078 B2

11

FIG. 186 is a block diagram of chroma suppression logic of
the YCC processing logic of FIG. 183, in accordance with an
embodiment;

FIG. 187 is a plot of chroma gain versus a sharp value of
luma, which may be used in a lookup table to obtain a first
attenuation factor in the chroma suppression logic of FIG.
186, in accordance with an embodiment;

FIG. 188 is a plot of chroma gain versus an unsharp value
of luma, which may be used in a lookup table to obtain a
second attenuation factor in the chroma suppression logic of
FIG. 186, in accordance with an embodiment;

FIG. 189 is a block diagram of brightness, contrast, and
color adjustment logic of the YCC processing logic of FIG.
183, in accordance with an embodiment;

FIG. 190 is a block diagram of horizontal chroma decima-
tion logic of the YCC processing logic of FIG. 183, in accor-
dance with an embodiment;

FIG. 191 is a block diagram of a first horizontal filter mode
of the horizontal chroma decimation logic of FIG. 190, in
accordance with an embodiment;

FIG. 192 is a plot representing a lancsoz filter waveform
implemented in the first horizontal filter mode of FIG. 191, in
accordance with an embodiment;

FIG. 193 is a block diagram of a second horizontal filter
mode of the horizontal chroma decimation logic of FIG. 190,
in accordance with an embodiment;

FIG. 194 is a schematic illustration of horizontal chroma
decimation using the horizontal chroma decimation logic of
FIG. 190, in accordance with an embodiment;

FIG. 195 is a block diagram of a YCC scaler with geometric
distortion correction and scaling—formatting functions, in
accordance with an embodiment;

FIG. 196 is a flowchart describing a method for geometric
distortion correction, in accordance with an embodiment;

FIG. 197 is a plot of a vertical span in total lines of pixels
used in a luminance component of the YCC scaler of FIG.
195, in accordance with an embodiment;

FIG. 198 is a plot of a vertical span in total lines of pixels
used in a chrominance component of the YCC scaler of FIG.
195, in accordance with an embodiment;

FIG. 199 is a block diagram of a line buffer module of the
YCC scaler of FIG. 195, in accordance with an embodiment;

FIGS. 200-203 are random access memory (RAM) data
formats for writing, storage in 1x4160x10 mode, storage in
2x2080x10 mode, and 4x1040x10 mode, respectively, in
accordance with an embodiment;

FIG. 204 is a block diagram of an output shifter with a
preload butfer used in the YCC scaler of FIG. 195, in accor-
dance with an embodiment;

FIG. 205 is a block diagram of a line buffer controller to
control writing in the YCC scaler of FIG. 195, in accordance
with an embodiment;

FIG. 206 is a block diagram of vertical luminance coordi-
nate generation logic to determine displacement caused by
geometric distortion, in accordance with an embodiment;

FIG. 207 is a block diagram of vertical luminance displace-
ment computation logic of the vertical luminance coordinate
generation logic of FIG. 206, in accordance with an embodi-
ment;

FIG. 208 is a block diagram of vertical luminance resam-
pling filter logic of the YCC scaler of FIG. 195, in accordance
with an embodiment;

FIG. 209 is a block diagram of horizontal luminance resa-
mpling filter logic of the YCC scaler of FIG. 195, in accor-
dance with an embodiment;

5

10

15

20

25

30

35

40

45

50

55

60

65

12

FIG. 210 is a block diagram of horizontal chrominance
resampling filter logic of the YCC scaler of FIG. 195, in
accordance with an embodiment;

FIGS. 211-213 are block diagrams illustrating various pro-
cessing orders of the YCC scaler logic and chromanoise
reduction logic of the YCC processing logic of FIG. 183, in
accordance with an embodiment;

FIG. 214 is a block diagram of the chromanoise reduction
logic of the YCC processing logic of FIG. 183, in accordance
with an embodiment;

FIG. 215 is an example of a 3x3 pixel filter, in accordance
with an embodiment;

FIG. 216 is an example of a sparse 5x5 pixel filter enlarged
from the 3x3 pixel filter of FIG. 215, in accordance with an
embodiment;

FIGS. 217 and 218 represent a flowchart of a method for
reducing chromanoise, in accordance with an embodiment;
and

FIG. 219 is a flowchart of a method for determining a noise
threshold for the method for reducing chromanoise of FIGS.
217 and 218.

FIG. 220 is a block diagram of line buffering used in
correcting for geometric distortion, in accordance with an
embodiment;

FIG. 221 is a flowchart describing a manner of separably
correcting for geometric distortion in vertical and horizontal
scalers, in accordance with an embodiment;

FIG. 222 is a block diagram of processing image data in a
series of tiles, in accordance with an embodiment;

FIG. 223 is a block diagram of pixel data having a clipped
pixel flag, in accordance with an embodiment;

FIG. 224 is an example image having a column offset fixed
pattern noise, in accordance with an embodiment;

FIG. 225 is an example image after applying a column
offset fixed pattern noise correction, in accordance with an
embodiment;

FIG. 226 is an example image after with low frequency
portions of image data and high frequency portions of image
data, in accordance with an embodiment;

FIG. 227 is graph of noise statistics as represented by a plot
of standard deviations for portions of image data versus pixel
intensity values, in accordance with an embodiment;

FIG. 228 is an example image that has been corrected for
geometric distortion, in accordance with an embodiment; and

FIG. 229 is an example of signed image data biasing
throughout the raw processing logic of the image pipe pro-
cessing logic, in accordance with an embodiment.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

One or more specific embodiments of the present disclo-
sure will be described below. These described embodiments
are only examples of the presently disclosed techniques.
Additionally, in an effort to provide a concise description of
these embodiments, all features of an actual implementation
may not be described in the specification. It should be appre-
ciated that in the development of any such actual implemen-
tation, as in any engineering or design project, numerous
implementation-specific decisions may be made to achieve
the developers’ specific goals, such as compliance with sys-
tem-related and business-related constraints, which may vary
from one implementation to another. Moreover, it should be
appreciated that such a development effort might be complex
and time consuming, but would nevertheless be a routine
undertaking of design, fabrication, and manufacture for those
of ordinary skill having the benefit of this disclosure.

US 9,105,078 B2

13

When introducing elements of various embodiments of the
present disclosure, the articles “a,” “an,” and “the” are
intended to mean that there are one or more of the elements.
The terms “comprising,” “including,” and “having” are
intended to be inclusive and mean that there may be addi-
tional elements other than the listed elements. Additionally, it
should be understood that references to “one embodiment” or
“embodiments” of the present disclosure are not intended to
be interpreted as excluding the existence of additional
embodiments that also incorporate the recited features.

Acquired image data may undergo significant processing
before appearing as a finished image. Accordingly, the dis-
closure below will describe image processing circuitry that
can efficiently process image data. Statistics logic of the
image processing circuitry may obtain statistics associated
with an image in raw format in parallel with other image data
processing. A raw-format processing block may also process
the raw image data, using the statistics to correct fixed pattern
noise, defective pixels, recover highlights lost by the sensor,
and/or perform other operations. An RGB-format processing
block may employ a more efficient organization, better demo-
saicing, improved local tone mapping, and/or color correc-
tion to correct colors from image data from more than one
sensor vendor. AY CC-format processing block may similarly
offer amore efficient organization, as well as improved sharp-
ening, geometric distortion correction, and chromanoise
reduction. Moreover, many operations may be performed
using signed, rather than unsigned, pixel data. Using signed
pixel data may preserve image data when operations produce
interim negative pixel results, as well when a sensor produces
black level noise in the negative direction.

With this in mind, FIG. 1 is a block diagram illustrating an
example of an electronic device 10 that may process image
data using one or more of the image processing techniques
briefly mentioned above. The electronic device 10 may be any
suitable electronic device, such as a laptop or desktop com-
puter, a mobile phone, a digital media player, or the like, that
can receive and process image data. By way of example, the
electronic device 10 may be a portable electronic device, such
asamodel ofan iPod® or iPhone®, available from Apple Inc.
of Cupertino, Calif. The electronic device 10 may be a desk-
top or notebook computer, such as a model of a MacBook®,
MacBook® Pro, MacBook Air®, iMac®, Mac® Mini, or
Mac Pro®, available from Apple Inc. In other embodiments,
electronic device 10 may be a model of an electronic device
from another manufacturer that is capable of acquiring and
processing image data.

Regardless of form, the electronic device 10 may process
image data using one or more of the image processing tech-
niques presented in this disclosure. The electronic device 10
may include or operate on image data from one or more
imaging devices, such as an integrated or external digital
camera. Certain specific examples of the electronic device 10
will be discussed below with reference to FIGS. 3-6.

As shown in FIG. 1, the electronic device 10 may include
various components. The functional blocks shown in FIG. 1
may represent hardware elements (including circuitry), soft-
ware elements (including code stored on a computer-readable
medium) or a combination of both hardware and software
elements. In the example of FIG. 1, the electronic device 10
includes input/output (I/O) ports 12, input structures 14, one
or more processors 16, a memory 18, nonvolatile storage 20,
atemperature sensor 22, networking device 24, power source
26, display 28, one or more imaging devices 30, and image
processing circuitry 32. It should be appreciated, however,
that the components illustrated in FIG. 1 are provided only as
an example. Other embodiments of the electronic device 10

10

20

25

30

35

40

45

50

55

60

65

14

may include more or fewer components. To provide one
example, some embodiments of the electronic device 10 may
not include the imaging device(s) 30. In any case, the image
processing circuitry 32 may implement one or more of the
image processing techniques discussed below. The image
processing circuitry 32 may receive image data for image
processing from the memory 18, the nonvolatile storage
device(s) 20, the imaging device(s) 30, or any other suitable
source.

Before continuing further, the reader should note that the
system block diagram of the device 10 shown in FIG. 1 is
intended to be a high-level control diagram depicting various
components that may be included in such a device 10. That is,
the connection lines between each individual component
shown in FIG. 1 may not necessarily represent paths or direc-
tions through which data flows or is transmitted between
various components of the device 10. Indeed, as discussed
below, the depicted processor(s) 16 may, in some embodi-
ments, include multiple processors, such as a main processor
(e.g., CPU), and dedicated image and/or video processors. In
such embodiments, the processing of image data may be
primarily handled by these dedicated processors, thus effec-
tively offloading such tasks from a main processor (CPU). In
addition, the image processing circuitry 32 may communi-
cate with the memory 18 directly via a direct memory access
(DMA) bus.

Considering each of the components of FIG. 1, the I/O
ports 12 may represent ports to connect to a variety of devices,
such as a power source, an audio output device, or other
electronic devices. For example, the I/O ports 12 may connect
to an external imaging device, such as a digital camera, to
acquire image data to be processed in the image processing
circuitry 32. The input structures 14 may enable user input to
the electronic device, and may include hardware keys, a
touch-sensitive element of the display 28, and/or a micro-
phone.

The processor(s) 16 may control the general operation of
the device 10. For instance, the processor(s) 16 may execute
an operating system, programs, user and application inter-
faces, and other functions of the electronic device 10. The
processor(s) 16 may include one or more microprocessors
and/or application-specific microprocessors (ASICs), or a
combination of such processing components. For example,
the processor(s) 16 may include one or more instruction set
(e.g., RISC) processors, as well as graphics processors
(GPU), video processors, audio processors and/or related
chip sets. As may be appreciated, the processor(s) 16 may be
coupled to one or more data buses for transferring data and
instructions between various components of the device 10. In
certain embodiments, the processor(s) 16 may provide the
processing capability to execute an imaging applications on
the electronic device 10, such as Photo Booth®, Aperture®,
iPhoto®, Preview®, iMovie®, or Final Cut Pro® available
from Apple Inc., or the “Camera” and/or “Photo” applications
provided by Apple Inc. and available on some models of the
iPhone®, iPod®, and iPad®.

A computer-readable medium, such as the memory 18 or
the nonvolatile storage 20, may store the instructions or data
to be processed by the processor(s) 16. The memory 18 may
include any suitable memory device, such as random access
memory (RAM) or read only memory (ROM). The nonvola-
tile storage 20 may include flash memory, a hard drive, or any
other optical, magnetic, and/or solid-state storage media. The
memory 18 and/or the nonvolatile storage 20 may store firm-
ware, data files, image data, software programs and applica-

US 9,105,078 B2

15

tions, and so forth. Such digital information may be used in
image processing to control or supplement the image process-
ing circuitry 32.

In some examples of the electronic device 10, the tempera-
ture sensor 22 may indicate a temperature associated with the
imaging device(s) 30. Since fixed pattern noise may be exac-
erbated by higher temperatures, the image processing cir-
cuitry 32 may vary certain operations to remove fixed pattern
noise depending on the temperature. The network device 24
may be a network controller or a network interface card
(NIC), and may enable network communication over a local
area network (LAN) (e.g., Wi-Fi), a personal area network
(e.g., Bluetooth), and/or a wide area network (WAN) (e.g., a
3G or 4G data network). The power source 26 of the device 10
may include a Li-ion battery and/or a power supply unit
(PSU) to draw power from an electrical outlet. The display 28
may display various images generated by device 10, such as a
GUI for an operating system or image data (including still
images and video data) processed by the image processing
circuitry 32. The display 28 may be any suitable type of
display, such as a liquid crystal display (LCD), plasma dis-
play, or an organic light emitting diode (OLED) display, for
example. Additionally, as mentioned above, the display 28
may include a touch-sensitive element that may represent an
input structure 14 of the electronic device 10.

The imaging device(s) 30 of the electronic device 10 may
represent a digital camera that may acquire both still images
and video. Each imaging device 30 may include a lens and an
image sensor capture and convert light into electrical signals.
By way of example, the image sensor may include a CMOS
image sensor (e.g., a CMOS active-pixel sensor (APS)) or a
CCD (charge-coupled device) sensor. Generally, the image
sensor of the imaging device 30 includes an integrated circuit
with an array of photodetectors. The array of photodetectors
may detect the intensity of light captured at specific locations
on the sensor. Photodetectors are generally only able to cap-
ture intensity, however, and may not detect the particular
wavelength of the captured light.

Accordingly, the image sensor may include a color filter
array (CFA) that may overlay the pixel array of the image
sensor to capture color information. The color filter array may
include an array of small color filters, each of which may
overlap a respective location—namely, a picture element, or
pixel—of the image sensor and filter the captured light by
wavelength. Thus, together, the color filter array and the
photodetectors may detect both the wavelength and intensity
of light through the lens. The resulting image information
may represent a frame of raw image data.

The color filter array may be a Bayer color filter array, an
example of which appears in FIG. 2. A Bayer color filter array
provides a filter pattern that captures 50% green elements,
25% red elements, and 25% blue elements of light reaching
the sensor. In the example of FIG. 2, 2 green elements (Gr and
Gb), 1 red element (R), and 1 blue element (B) will repeat in
the pattern shown across the full pixel array of the sensor(s) of
the imaging device(s) 30. Thus, an image sensor with a Bayer
color filter array may provide information regarding the
intensity of the light received by the imaging device 30 at the
green, red, and blue wavelengths, whereby each image pixel
records only one of the three colors (RGB). This information,
which may be referred to as “raw image data” or data in the
“raw domain,” may be processed using one or more demosa-
icing techniques to convert the raw image data into a full color
image, generally by interpolating a set of red, green, and blue
values for each pixel. As will be discussed further below, such
demosaicing techniques may be performed by the image pro-
cessing circuitry 32.

25

30

35

40

45

16

The image processing circuitry 32 may provide many other
image processing steps, as well, including defective pixel
detection and correction, fixed pattern noise reduction, lens
shading correction, image sharpening, noise reduction,
gamma correction, image enhancement, color-space conver-
sion, image compression, chroma subsampling, local tone
mapping, chroma noise reduction, image scaling operations,
and so forth. In some embodiments, the image processing
circuitry 32 may include various subcomponents and/or dis-
crete units of logic that collectively form an image processing
“pipeline” for performing each of the various image process-
ing steps. These subcomponents may be implemented using
hardware (e.g., digital signal processors or ASICs) or soft-
ware, or via a combination of hardware and software compo-
nents. The various image processing operations that may be
provided by the image processing circuitry 32 will be dis-
cussed in greater detail below.

Before continuing, it should be noted that while various
embodiments of the various image processing techniques
discussed below may use a Bayer CFA, the presently dis-
closed techniques are not intended to be limited in this regard.
Indeed, those skilled in the art will appreciate that the image
processing techniques provided herein may be applicable to
any suitable type of color filter array, including RGBW filters,
CYGM filters, and so forth.

Regardless of the particular filter employed by the sensor
of'the imaging device(s) 30, the electronic device 10 may take
any number of suitable forms. Some examples of these pos-
sible forms appear in FIGS. 3-6. Turning to FIG. 3, a note-
book computer 40 may include a housing 42, the display 28,
the I/O ports 12, and the input structures 14. The input struc-
tures 14 may include a keyboard and a touchpad mouse that
are integrated with the housing 42. Additionally, the input
structure 14 may include various other buttons and/or
switches which may be used to interact with the computer 40,
such as to power on or start the computer, to operate a GUI or
an application running on the computer 40, as well as adjust
various other aspects relating to operation of the computer 40
(e.g., sound volume, display brightness, etc.). The computer
40 may also include various /O ports 12 that provide for
connectivity to additional devices, as discussed above, such
as a FireWire® or USB port, a high definition multimedia
interface (HDMI) port, or any other type of port that is suit-
able for connecting to an external device. Additionally, the
computer 40 may include network connectivity (e.g., network
device 26), memory (e.g., memory 20), and storage capabili-
ties (e.g., storage device 22), as described above with respect
to FIG. 1.

The notebook computer 40 may include an integrated
imaging device 30 (e.g., acamera). In other embodiments, the
notebook computer 40 may use an external camera (e.g., an
external USB camera or a “webcam”) connected to one or
more of the /O ports 12 instead of or in addition to the
integrated imaging device 30. For instance, an external cam-
era may be an iSight® camera available from Apple Inc.
Images captured by the imaging device 30 may be viewed by
auser using an image viewing application, or may be used by
other applications, including video-conferencing applica-
tions, such as iChat®, and image editing/viewing applica-
tions, such as Photo Booth®, Aperture®, iPhoto®, or Pre-
view®, which are available from Apple Inc. In certain
embodiments, the depicted notebook computer 40 may be a
model of a MacBook®, MacBook® Pro, MacBook Air®, or
PowerBook® available from Apple Inc. In other embodi-
ments, the computer 40 may be portable tablet computing
device, such as a model of an iPad® from Apple Inc.

US 9,105,078 B2

17

FIG. 4 shows the electronic device 10 in the form of a
desktop computer 50. The desktop computer 50 may include
a number of features that may be generally similar to those
provided by the notebook computer 40 shown in FIG. 4, but
may have a generally larger overall form factor. As shown, the
desktop computer 50 may be housed in an enclosure 42 that
includes the display 28, as well as various other components
discussed above with regard to the block diagram shown in
FIG. 1. Further, the desktop computer 50 may include an
external keyboard and mouse (input structures 14) that may
be coupled to the computer 50 via one or more 1/O ports 12
(e.g., USB) or may communicate with the computer 50 wire-
lessly (e.g., RF, Bluetooth, etc.). The desktop computer 50
also includes an imaging device 30, which may be an inte-
grated or external camera, as discussed above. In certain
embodiments, the depicted desktop computer 50 may be a
model of aniMac®, Mac® mini, or Mac Pro®, available from
Apple Inc.

The electronic device 10 may also take the form of portable
handheld device 60, as shown in FIGS. 5 and 6. By way of
example, the handheld device 60 may be a model of an iPod®
oriPhone® available from Apple Inc. The handheld device 60
includes an enclosure 42, which may function to protect the
interior components from physical damage and to shield them
from electromagnetic interference. The enclosure 42 also
includes various user input structures 14 through which a user
may interface with the handheld device 60. Each input struc-
ture 14 may control various device functions when pressed or
actuated. As shown in FIG. 5, the handheld device 60 may
also include various I/O ports 12. For instance, the depicted
1/0O ports 12 may include a proprietary connection port 12a
for transmitting and receiving data files or for charging a
power source 26 and an audio connection port 1256 for con-
necting the device 60 to an audio output device (e.g., head-
phones or speakers). Further, in embodiments where the
handheld device 60 provides mobile phone functionality, the
device 60 may include an I/O port 12¢ for receiving a sub-
scriber identify module (SIM) card.

The display device 28 may display images generated by the
handheld device 60. For example, the display 28 may display
system indicators 64 that may indicate device power status,
signal strength, external device connections, and so forth. The
display 28 may also display a GUI 52 that allows a user to
interact with the device 60, as discussed above with reference
to FIG. 4. The GUI 52 may include graphical elements, such
as the icons 54 which may correspond to various applications
that may be opened or executed upon detecting a user selec-
tion of a respective icon 54. By way of example, one of the
icons 54 may represent a camera application 66 that may
allow a user to operate an imaging device 30 (shown in
phantom lines in FIG. 5). Referring briefly to FIG. 6, a rear
view of the handheld electronic device 60 depicted in FIG. 5
is illustrated, which shows the imaging device 30 integrated
with the housing 42 and positioned on the rear of the handheld
device 60.

As mentioned above, image data acquired using the imag-
ing device 30 or elsewhere may be processed using the image
processing circuitry 32, which may include hardware (e.g.,
disposed within the enclosure 42) and/or software stored on
one or more storage devices (e.g., memory 18 or nonvolatile
storage 20) of the device 60. Images acquired using the cam-
era application 66 and the imaging device 30 may be stored on
the device 60 (e.g., in the nonvolatile storage 20) and may be
viewed at a later time using a photo viewing application 68.

The handheld device 60 may also include various audio
input and output elements. For example, the audio input/
output elements, depicted generally by reference numeral 70,

10

15

20

25

30

35

40

45

50

55

60

65

18

may include an input receiver, such as one or more micro-
phones. The audio input/output elements 70 may include one
or more output transmitters. Such output transmitters may
include one or more speakers that may output sound from a
media player application 72. In some embodiments (e.g.,
those in which the handheld device 60 includes a cell phone
application), an additional audio output transmitter 74 may be
provided, as shown in FIG. 5. Like the output transmitters of
the audio input/output elements 70, the output transmitter 74
may also include one or more speakers to transmit audio
signals to a user, such as voice data received during a tele-
phone call.

Having provided some context with regard to possible
forms that the electronic device 10 may take, the present
discussion will now focus on the image processing circuitry
32 shown in FIG. 1. As mentioned above, the image process-
ing circuitry 32 may be implemented using hardware and/or
software components, and may include various processing
units that define an image signal processing (ISP) pipeline.
First, a general discussion of the operation of the various
functional components of image processing circuitry 32 will
be provided with reference to FIG. 7. More specific descrip-
tion of the components of the image processing circuitry 32
will be further provided below.

Referring to FIG. 7, the image processing circuitry 32 may
include image signal processing (ISP) pipe logic 80, pixel
scale and offset logic 82, control logic 84, and a back-end
interface 86. To avoid processing image data from the imag-
ing device 30 through some form of front-end image process-
ing before processing the image data in the ISP pipe process-
ing logic 80, the ISP pipe processing logic 80 may include
image processing logic that may obtain image statistics in
parallel with other image processing logic that may process
image data to obtain a final processed image. The image
statistics may be used to determine one or more control
parameters for the ISP pipe logic 82 and/or the imaging
device 30, as well as suitable software that may perform
subsequent image processing on the image data.

The ISP pipe processing logic 80 may capture image data
from an image sensor input signal. For instance, as shown in
FIG. 7, the imaging device 30 may include lens(es) 88 and
corresponding image sensor(s) 90. The image sensor(s) 90
may include a color filter array (e.g., a Bayer filter, such as
that shown in FIG. 2) to capture both light intensity and
wavelength information. This raw image data from the image
sensor(s) 90 may be output 92 to a sensor interface 94. The
sensor interface 94 may provide the raw image data 96 to the
ISP pipe processing logic 80 via the scale and offset logic 82.
By way of example, the sensor interface 94 may use a Stan-
dard Mobile Imaging Architecture (SMIA) interface or other
serial or parallel camera interfaces, or some combination
thereof. In certain embodiments, the ISP pipe processing
logic 80 may operate within its own clock domain and may
provide an asynchronous interface to the sensor interface 94
to support image sensors of different sizes and timing require-
ments. The sensor interface 94 may include, in some embodi-
ments, a sub-interface on the sensor side (e.g., sensor-side
interface) and a sub-interface on the ISP pipe processing logic
80 side, with the sub-interfaces forming the sensor interface
94. The sensor interface 94 may also provide the raw image
data (shown as numeral 98) directly to picture memory 100,
which may represent part of the memory 18 accessible via
direct memory access (DMA).

The raw image data 96 may take any of a number of
formats. For instance, each image pixel may have a bit-depth
of 8, 10, 12, 14, or 16 bits. Various examples of memory
formats showing how pixel data may be stored and addressed

US 9,105,078 B2

19

in memory are discussed in further detail below. The scale and
offset logic 82 may convert the raw image data 96 from the
sensor interface 94 into a signed, rather than unsigned, value.
Processing the raw image data 96 in a signed format, rather
than merely clipping the raw image data 96 to an unsigned
format, may preserve image information that would other-
wise be lost. To provide a brief example, noise on the image
sensor(s) 90 may occur in a positive or negative direction. In
other words, some pixels that should represent a particular
light intensity may have values of a particular value, others
may have noise resulting in values greater than the particular
value, and still others may have noise resulting in values less
than the particular value. When an area of the image sensor(s)
90 captures little or no light, sensor noise may increase or
decrease individual pixel values such that the average pixel
value is about zero. If only noise occurring in a negative
direction is discarded, however, the average black color could
rise above zero and would produce grayish-tinged black
areas. Since the ISP pipe processing logic 80 may use signed
image data, rather than merely clipping the negative noise
away, the ISP pipe processing logic 80 may more accurately
render dark black areas in images.

The ISP pipe processing logic 80 may process the raw
image data 96 on a pixel-by-pixel basis. The ISP pipe pro-
cessing logic 80 may perform one or more image processing
operations on the raw image data 96 and collect statistics
about the image data 96. The ISP pipe processing logic 80
may perform image processing using signed 17-bit data, and
may collect statistics in 16-bit or 8-bit precision. In some
embodiments, the ISP pipe processing logic 80 may collect
statistics at a precision of 8-bits, raw pixel at a higher bit-
depth may be down-sampled first to an 8-bit format. As may
be appreciated, down-sampling to 8-bits may reduce hard-
ware size (e.g., area) and also reduce processing resources
(e.g., power). Collecting statistics in 16-bit precision, how-
ever, may produce image statistics both more accurate and
more precise.

The ISP pipe processing logic 80 may also receive pixel
data from the memory 100. As mentioned above and shown
by reference numeral 98, the sensor interface 94 may send
raw pixel data from the sensor(s) 90 to the memory 100. The
raw pixel data stored in the memory 100 may be provided to
the ISP pipe processing logic 80 for processing at another
time. When the raw pixel data is provided via the memory
100, the scale and offset logic 82 may convert the raw pixel
data to signed 17-bit pixel data 102. Upon receiving the raw
image data from the sensor interface 94 or the memory 100,
the ISP pipe processing logic 80 may perform various image
processing operations, which will be discussed in greater
detail below. In addition, the ISP pipe processing logic 80
may transfer signed 17-bit pixel data 102 in various stages of
processing back to the memory 100 via the scale and offset
logic 82. The ISP pipe processing logic 80 may also transfer
and receive certain unsigned image data 104 (e.g., processed
image data) to and from the memory 100, as will be discussed
further below.

Moreover, throughout image processing, the control logic
84 may control various operations of image processing cir-
cuitry 32 (e.g., shifting pixel data into and out of the ISP pipe
processing logic 80) via control signals 106. The control logic
84 may also control the operation of the imaging device(s) 30
(e.g., integration time to avoid flicker caused by certain types
of interior lighting) via control signals 108. The control logic
84 may rely on statistical data determined by the ISP pipe
processing logic 80. Such statistical data may include, for
example, image sensor statistics relating to auto-exposure,
auto-white balance, auto-focus, flicker detection, black level

10

15

20

25

30

35

40

45

50

55

60

65

20

compensation (BLC), lens shading correction, and so forth.
The control logic 84 may include a processor and/or micro-
controller configured to execute one or more routines (e.g.,
firmware) that may determine, based upon the statistical data
102, the control signals 106 and 108. By way of example, the
control signals 106 may include gain levels and color correc-
tion matrix (CCM) coefficients for auto-white balance and
color adjustment (e.g., during RGB processing), as well as
lens shading correction parameters which, as discussed
below, may be determined based upon white point balance
parameters. The control signals 108 may include sensor con-
trol parameters (e.g., gains, integration time for exposure
control), camera flash control parameters, lens control param-
eters (e.g., focal length for focusing or zoom), or a combina-
tion of such parameters. In some embodiments, the control
logic 84 may also analyze historical statistics, which may be
stored on the electronic device 10 (e.g., in memory 18 or
storage 20).

The ISP pipe processing logic 80 may output processed
image data to the memory 100 (e.g., numeral 104) or to the
ISP back-end interface 86 (e.g., numeral 110). The ISP back-
end interface 86 may alternatively receive image data from
the memory 100. In either case, the ISP back-end logic 86
may pass image data to other blocks for post-processing
operations. For example, the ISP back-end interface 86 may
pass the image data to other logic to detect certain features,
such as faces, in the image data. Facial detection data may be
fed to statistics processing components of the ISP pipe pro-
cessing logic 80 as feedback data for auto-white balance,
auto-focus, flicker, and auto-exposure statistics, as well as
other suitable logic that may benefit from facial detection
logic.

In further embodiments, the feature detection logic may
also be configured to detect the locations of corners of objects
in the image frame. This data may be used to identify the
location of features in consecutive image frames in order to
determine an estimation of global motion between frames,
which may be used to perform certain image processing
operations, such as image registration. In one embodiment,
the identification of corner features and the like may be par-
ticularly useful for algorithms that combine multiple image
frames, such as in certain high dynamic range (HDR) imaging
algorithms, as well as certain panoramic stitching algorithms.

The ISP back-end interface 86 may output post-processed
image data (e.g., numeral 114) to an encoder/decoder 116 to
encode the image data. The encoded image data may be stored
and then later decoded (e.g., numeral 118) to be displayed on
the display 28. By way of example, the compression engine or
“encoder” 116 may be a JPEG compression engine for encod-
ing still images, an H.264 compression engine for encoding
video images, or any other suitable compression engine, as
well as a corresponding decompression engine to decode
encoded image data. Additionally or alternatively, the ISP
back-end interface 86 may output the post-processed image
data (e.g., numeral 120) to the display 28. Additionally or
alternatively, output from the ISP pipe processing logic 80 or
the ISP back-end interface 86 may be stored in memory 100.
The display 28 may read the image data from the memory 100
(e.g., numeral 122).

Overview of the ISP Pipe Processing Logic

A general organization of the ISP pipe processing logic 80
appears in FIG. 8. It should be appreciated that the ISP pipe
processing logic 80 may receive image data from one of
several different direct memory access (DMA) sources (illus-
trated as S0-S7) to one of several different DMA destinations

US 9,105,078 B2

21

(illustrated as DO-D7). A specific discussion about the rela-
tionship between each DMA source SO-S7 and destination
DO0-D7 will appear further below.

As shown in FIG. 8, two sensors 90a and 905 may provide
raw image data through respective sensor interfaces 94a (also
referred to as Sif0, Sens0, or SO) and 946 (also referred to as
Sif1, Sens1, or S1) to input queues 130a and 1305. The sensor
interfaces 94a and 945 represent two sources of pixel data that
may be supplied to the ISP pipe processing logic 80. Specifi-
cally, the sensor interface 94a may be referred to as a source
S0 and the sensor interface 945 may be referred to as a source
S1. Raw image data from the sensor interface 94a (SO) or the
sensor interface 945 (S1) may be stored in the memory 100
(destinations DO or D1, respectively) or provided directly to
the components of the ISP pipe processing logic 80. It should
be appreciated that raw image data stored in the memory 100
may be provided to the components of the ISP pipe process-
ing logic 80 at a later time.

Thus, raw image data from the sensor interfaces 94a (S0) or
945 (S1) or from the memory 100 (e.g., via DMA sources S2
or S3) may be transferred to a statistics logic 140a (referred to
as a DMA destination D2) or a statistics logic 1405 (referred
to as a DMA destination D3). The statistics logic 140a and
1405 may determine sets of statistics that may relate to auto-
exposure, auto-white balance, auto-focus, flicker detection,
black level compensation, lens shading correction, local tone
mapping and highlight recovery, fixed pattern noise reduc-
tion, and so forth. In certain embodiments, when only one of
the sensors 90a or 904 is actively acquiring images, the image
data may be sent to both the statistics logic 140a and the
statistics logic 1405 if additional statistics are required. To
provide one brief example, if both the statistics logic 140a and
the statistics logic 1405 are available, the statistics logic 140a
may be used to collect statistics for one color space (e.g.,
RGB), and the statistics logic 1405 may be used to collect
statistics for another color space (e.g., YCbCr). Thus, if
desired, the statistics logic 140a and 1405 may operate in
parallel to collect multiple sets of statistics for each frame of
image data acquired by inactive sensor 90a or 905.

In the example of FIG. 8, the two statistics logic 140a and
1404 are essentially identical. As used herein, the statistics
logic 140a may be referred to as StatsPipeO or DMA desti-
nation D2 and the statistics logic 1406 may be referred to as
StastPipel or DMA destination D3. Each may receive image
data from one of several sources (S0-S3), as conceptually
illustrated by respective selection logic 142a and 1425b. The
statistics logic 140a and 1405 also include respective image
processing logic 144a and 1445 to process pixel data before
reaching a statistics core 146a or 1465. The statistics core
146a or 1465 may collect image statistics using the image
data processed through the image processing logic 144a or
1445 and/or using raw image data that has not been processed
by the image processing logic 144a or 1445.

The ISP pipe processing logic 80 may also include several
image processing blocks, some of which may operate in
parallel with the statistics logic 140a and 1405. For example,
a raw block 150 (also referred to as RAWProc or DMA
destination D4) also may receive one of several possible raw
image data signals via selection logic 152 and may process
the raw image data using raw image processing logic 154. The
raw image processing logic 154 may perform several raw
image data processing operations, including sensor lineariza-
tion (SLIN), black level compensation (BLC), fixed pattern
noise reduction (FPNR), temporal filtering (TF), defective
pixel correction (DPC), collection of additional noise statis-
tics (NS), spatial noise filtering (SNF), lens shading correc-

40

45

55

22

tion (LSC), white balance gain (WBG), highlight recovery
(HR), and/or raw scaling (RSCL).

The output of the raw block 150 may be stored in the
memory 100 or continue to an RGB-format processing block
160 (also referred to as RgbProc or DMA destination DS).
The RGB block 160 may receive one of two image data
signals via selection logic 162, which may be processed by
RGB image processing logic 164. The RGB image process-
ing logic 164 may perform several image data processing
operations, including demosaicing (DEM) to obtain RGB-
format image data from raw image data. Having obtained
RGB-format image data, the RGB image processing logic
164 may perform local tone mapping (LTM); color correction
using a color correction matrix (CCM); color correction using
a three-dimensional color lookup table (CLUT); gamma/de-
gamma (GAM); gain, offset, and clipping (GOC); and/or
color space conversion (CSC), producing image data in a
YCC format (e.g., YCbCr or YUV).

The output of the RGB block 160 may be stored in the
memory 100 or may continue to be processed by a YCC-
format image processing block 170 (also referred to as
YCCProc or DMA destination D6). The YCC block 170 may
receive one of two possible signals via selection logic 172.
The YCC block 170 may perform certain YCC-format image
processing using YCC image processing logic 174. The YCC
image processing logic 174 may perform, for example, color
space conversion (CSC); Y sharpening and/or chroma sup-
pression (YSH); dynamic range compression (DRC); bright-
ness, contrast, and color adjustment (BCC); gamma/de-
gamma (GAM); horizontal decimation (HDEC); YCC
scaling and/or geometric distortion correction (SCL); and/or
chromanoise reduction (CNR). The output of the YCC block
170 may be stored in the memory 100 (e.g., in separate
luminance (Y) and chrominance (C) channels), or may con-
tinue to a backend interface block 180 (also referred to as
BEIF or DMA destination D7).

The backend interface block 180 may alternatively receive
image data from the memory 100 (conceptually illustrated by
a selection logic 182), supplying the image data to a backend
interface (BEIF) 184. The ISP pipe processing logic 80 can
forward the processed pixel data stream to additional process-
ing logic through the backend interface (BEIF) 184. The
backend interface (BEIF) may be a YCbCr4:2:2 10-bit-per-
component interface, where Cb and Cr data are interleaved
every other luma (Y) sample. The total width of the interface
thus may be 20 bits with chroma stored in bits 0-9 and luma
stored in bits 10-19 (e.g., YOCbO0, Y1Cr1,Y2Cb2,Y3Cr3, and
so forth). Each pixel sample also may have an associated data
valid signal.

As can be seenin FIG. 8, eight asynchronous DMA sources
of'data (S0-S7) may provide image data to components of the
ISP type processing logic 80 to eight DMA destinations (DO-
D7). Namely, the sources may include: (S0), a direct input
from the sensor interface 94a; (S1), a direct input from the
sensor interface 94b; (S2), Sensor0 90a data input or other
raw image data from the memory 100; (S3), Sensorl data
input or other raw image data from the memory 100; (S4), raw
image data retrieved from the memory 100 (also referred to as
RawProcInDMA); (S5), raw image data or RGB-format
image data retrieved from the memory 100 (also referred to as
RgbProcInDMA); (S6), RGB-format image data retrieved
from the memory 100 (also referred to as YccProcInDMA);
and (S7), YCC-format image data retrieved from the memory
100 (also referred to as BEIFDMA). The destinations may
include: (D0), a DMA destination to the memory 100 for
image data obtained by Sensor0 90a (also referred to as
SifODMA); (D1), a DMA destination in the memory 100 for

US 9,105,078 B2

23

image data obtained by Sensorl 905 (also referred to as
Sif1IDMA); (D2), the first statistics logic 140qa (also referred
to as StatsPipe0); (D3), the second statistics logic 1405 (also
referred to as StatsPipel); (D4), a DMA destination to the raw
block 150 (also referred to as RAWProc); (DS), the RGB
block 160 (also referred to as RgbProc); (D6), the YCC block
170 (also referred to as YCCProc); and (D7), the back-end
interface block 180 (also referred to as BEIF). Only certain
DMA destinations may be valid for a particular source, as
generally shown in Table 1 below:

TABLE 1

5

24

response to the capture event, thus compensating for any such
lag and providing a more complete set of image data.

A control unit 190 may control the operation of the ISP
pipe processing logic 80. The control unit 190 may initialize
and program control registers 192 (also referred to as “go
registers”) to facilitate processing an image frame and to
select appropriate register bank(s) to update double-buftered
data registers. In some embodiments, the control unit 190
may also provide memory latency and quality of service
(QOS) information. Further, the control unit 190 may also

Example of ISP pipe processing logic 80 valid destinations DO-D7 for each source S0-S7

SifODMA SifIDMA StatsPipe0 StatsPipel RAWProc RgbProc YCCProc BEIF

(D0) (D1) (D2) (D3) (D4)

D3) De) (D7)

SensO

(80)

Sensl

(81)
SensODMA

(82)

Sens1 DMA
(83)
RawProcinDMA
(84)
RgbProcinDMA
(85)
YeeProcinDMA
(86)
BEIFDMA

(87

X X X X

X X
X X
X X

LT T

X X X

LT
T T R
T T T

Thus, for example, image data from Sensor0 90a (S0) may
be transferred to destination DO in the memory 100 (but not
destination D1), to the first statistics logic 140a (D2) or the
second statistics logic 14056 (D3), or to the raw block 150
(D4). By extension, through the raw block 150, the image data
from Sensor0 90a (SO) may be provided to the RGB block
160 (D5), the YCC block 170 (D6), or the backend interface
block 180 (D7). Similarly, as shown in Table 1, sources S2
and S3 may provide image data to destinations D2, D3, D4,
D5, D6, or D7, but not DO or D1.

The scale and offset logic 82 also appears in FIG. 8. The
scale and offset logic 82 may represent any suitable functions
to programmably scale and/or offset input pixel data from an
unsigned format to a signed format. In particular, in some
embodiments, the scale and offset logic 82 represents func-
tions implemented in DMA input and output channels to
convert pixel data. Thus, it should be appreciated that the
scale and offset logic may or may not convert image data,
depending on the input pixel format and/or the format of the
image data processed by the individual processing blocks.
The operation of the scale and offset logic 82 is described in
greater detail below with reference to FIGS. 40-43 below.

It should also be noted that the presently illustrated
embodiment may allow the ISP pipe processing logic 80 to
retain a certain number of previous frames (e.g., 5 frames) in
memory. For example, due to a delay or lag between the time
a user initiates a capture event (e.g., transitioning the image
system from a preview mode to a capture or a recording mode,
or even by just turning on or initializing the image sensor)
using the image sensor to when an image scene is captured,
not every frame that the user intended to capture may be
captured and processed in substantially real-time. Thus, by
retaining a certain number of previous frames in memory 100
(e.g., from a preview phase), these previous frames may be
processed later or alongside the frames actually captured in

35

40

45

50

55

60

65

control dynamic clock gating, which may be used to disable
clocks to one or more portions of the ISP pipe processing
logic 80 when there is not enough data in the input queue 130
from an active sensor.

General Principles of Operation

Using the “go registers” mentioned above, the control unit
190 may control the manner in which various parameters for
each of the processing units are updated. Generally, image
processing in the ISP pipe processing logic 80 may operate on
aframe-by-frame basis. As discussed above with reference to
Table 1, the input to the processing units may be from the
sensor interface (SO or S1) or from memory 100 (e.g., S2-S7).
Further, the processing units may employ various parameters
and configuration data, which may be stored in corresponding
data registers. In one embodiment, the data registers associ-
ated with each processing unit or destination may be grouped
into blocks forming a register bank group. In the example of
FIG. 8, several register bank groups may have block address
space, certain of which may be duplicated to provide two
banks of registers. Only the registers that are double buffered
are instantiated in the second bank. If a register is not double
buffered, the address in the second bank may be mapped to
the address of the same register in the first bank.

For registers that are double buffered, registers from one
bank are active and used by the processing units while the
registers from the other bank are shadowed. The shadowed
register may be updated by the control unit 190 during the
current frame interval while hardware is using the active
registers. The determination of which bank to use for a par-
ticular processing unit at a particular frame may be specified
by a “NextDestBk” (next bank) field in a go register corre-
sponding to the source providing the image data to the pro-
cessing unit. Essentially, NextDestBk is a field that allows the
control unit 190 to control which register bank becomes
active on a triggering event for the subsequent frame.

US 9,105,078 B2

25

Before discussing the operation of the go registers in detail,
FIG. 9 provides a general flowchart 200 for processing image
data on a frame-by-frame basis in accordance with the present
techniques. The flowchart 200 may begin when the destina-
tion processing units (e.g., D2-D7) targeted by a data source
(e.g., SO-S7) enter an idle state (block 202). This may indicate
that processing for the current frame is completed and, there-
fore, the control unit 190 may prepare for processing the next
frame. For instance, programmable parameters for each des-
tination processing unit next may be updated (block 204).
This may include, for example, updating the NextDestBk
field in the go register corresponding to the source, as well as
updating any parameters in the data registers corresponding
to the destination units. Thereafter, a triggering event may
place the destination units into a run state (block 206). Each
destination unit targeted by the source then may complete its
processing operations for the current frame (block 208), and
the process may flow to block 202 to begin processing the
next frame.

FIG. 10 depicts a block diagram view showing two banks
of data registers 210 and 212 that may be used by the various
destination units of the ISP-front end. For instance, Bank 0
(210) may include the data registers 1-n (2104-2104), and
Bank 1 (212) may include the data registers 1-n (212a-2124).
As discussed above, the embodiment shown in FIG. 10 may
use a register bank (Bank 0) having any suitable number of
register bank groups. Thus, in such embodiments, the register
block address space of each register is duplicated to provide a
second register bank (Bank 1).

FIG. 10 also illustrates go register 214 that may correspond
to one of the sources. As shown, the go register 214 includes
a “NextDestVId” field 216, the above-mentioned “Next-
DestBk” field 218, and a “NextSrcBk” field 219. These fields
may be programmed before beginning to process the current
frame. Particularly, NextDestV1d may indicate the destina-
tion(s) to where data from the source is to be sent. As dis-
cussed above, NextDestBk may indicate a corresponding data
register from either BankO or Bankl for each destination
targeted, as indicated by NextDestV1d. NextSrcBk may indi-
cate the source bank from which to obtain data (Bank0 or
Bank1). Though not shown in FIG. 10, the go register 214
may also include an arming bit, referred to herein as a “go bit,”
which may be set to arm the go register. When a triggering
event 226 for a current frame is detected, NextDestV1d, Next-
DestBk, and NextSrcBk may be copied into a “CurrDestV1d”
field 222, a “CurrDestBk” field 224, and a “CurrSrcBk” field
225 ofa corresponding current or “active” register 220. Inone
embodiment, the current register(s) 220 may be read-only
registers that may set by hardware, while remaining inacces-
sible to software commands within the ISP pipe processing
logic 80.

As may be appreciated, for each DMA source S0-S7, a
corresponding go register may be provided. The control unit
190 may use the go registers to control the sequencing of
frame processing within the ISP pipe processing logic 80.
Each source may be configured to operate asynchronously
and can send data to any of its valid destinations. Further, it
should be understood that for each destination, generally only
one source may be active during a current frame.

With regard to the arming and triggering of the go register
214, asserting an arming bit or “go bit” in the go register 214
arms the corresponding source with the associated Next-
DestV1ld and NextDestBk fields. For triggering, various
modes are available depending on whether the source input
data is read from the memory 100 (e.g., S2-S7) or whether the
source input data is from a sensor interface 94 (e.g., SO or S1).
For instance, if the input is from the memory 100, the arming

10

15

20

25

30

35

40

45

50

55

60

65

26

of'the go bit itself may serve as the triggering event, since the
control unit 190 has control over when data is read from the
memory 100. If the image frames are being input by the
sensor interface 94, the triggering event may depend on the
timing at which the corresponding go register is armed rela-
tive to when data from the sensor interface 94 is received. In
accordance with the present embodiment, three different
techniques for triggering timing from a sensor interface 94
input are shown in FIGS. 11-13.

Referring first to FIG. 11, a first scenario is illustrated in
which triggering occurs once all destinations targeted by the
source transition from a busy or run stateto an idle state. Here,
a data signal VVALID (228) represents an image data signal
from a source. The pulse 230 represents a current frame of
image data, the pulse 236 represents the next frame of image
data, and the interval 232 represents a vertical blanking inter-
val (VBLANK) 232 (e.g., represents the time differential
between the last line of the current frame 230 and the next
frame 236). The time differential between the rising edge and
falling edge of the pulse 230 represents a frame interval 234.
Thus, in FIG. 11, the source may be configured to trigger
when all targeted destinations have finished processing
operations on the current frame 230 and transition to an idle
state. In this scenario, the source is armed (e.g., by setting the
arming or “go” bit) before the destinations complete process-
ing so that the source can trigger and initiate processing of the
next frame 236 as soon as the targeted destinations go idle.
During the vertical blanking interval 232 the processing units
may be set up and configured for the next frame 236 using the
register banks specified by the go register corresponding to
the source before the sensor input data arrives. By way of
example, read buffers used by the ISP pipe processing logic
80 may be filled before the next frame 236 arrives. In this
case, shadowed registers corresponding to the active register
banks may be updated after the triggering event, thus allow-
ing for a full frame interval to setup the double-buffered
registers for the next frame (e.g., after frame 236).

FIG. 12 illustrates a second scenario in which the source is
triggered by arming the go bit in the go register corresponding
to the source. Under this “trigger-on-go” configuration, the
destination units targeted by the source are already idle and
the arming of the go bit is the triggering event. This triggering
mode may be used for registers that are not double-buffered
and, therefore, are updated during vertical blanking (e.g., as
opposed to updating a double-buffered shadow register dur-
ing the frame interval 234).

FIG. 13 illustrates a third triggering mode in which the
source is triggered upon detecting the start of the next frame,
i.e., arising VSYNC. However, it should be noted that in this
mode, if the go register is armed (by setting the go bit) after
the next frame 236 has already started processing, the source
will use the target destinations and register banks correspond-
ing to the previous frame, since the CurrDestV1d and Cur-
rDestBk fields are not updated before the destination start
processing. This leaves no vertical blanking interval for set-
ting up the destination processing units and may potentially
result in dropped frames, particularly when operating in a
dual sensor mode. It should be noted, however, that this mode
may nonetheless result in accurate operation if the image
processing circuitry 32 is operating in a single sensor mode
that uses the same register banks for each frame (e.g., the
destination (NextDestV1d) and register banks (NextDestBk)
do not change).

Referring now to FIGS. 14 and 16, control registers 214 (a
“go register”) and 220 (a “current read-only register”) are
respectively illustrated in more detail. The go register 214
includes an arming “go” bit 238, as well as the NextDestV1d

US 9,105,078 B2

27
field 216, the NextDestBk field 218, and the NextSrcBk field
219. The current read-only register 220 includes the Cur-
rDestV1d field 222, the CurrDestBk field 224, and the
CurrSrcBk field 225. It should be appreciated that the current
read-only register 220 represents a read-only register that
may indicate the current valid destinations and bank numbers.

As discussed above, each source (S0-S7) of the ISP pipe
processing logic 80 may have a corresponding go register
214. In one embodiment, the go bit 238 may be a single-bit
field. The go register 214 may be armed by setting the go bit
238 to 1, for example. The NextDestV1d field 216 may con-
tain a number of bits corresponding to the number of desti-
nations in the ISP pipe processing logic 80. For instance, in
the embodiment shown in FIG. 8, the ISP pipe processing
logic 80 includes eight destinations D0-D7. Thus, the go
register 214 may include eight bits in the NextDestV1d field
216, with one bit corresponding to each destination. Targeted
destinations in the NextDestV1d field 216 may be set to 1.
Similarly, the NextDestBk field 216 may contain a number of
bits corresponding to the number of data registers in the ISP
pipe processing logic 80. For instance, the embodiment of the
ISP pipe processing logic 80 shown in FIG. 8 may include
eight sources S0-S7. Accordingly, the NextDestBk field 218
may include eight bits, with one bit corresponding to each
source register. Source registers corresponding to Bank 0 and
1 may be selected by setting their respective bit values to O or
1, respectively. Thus, using the go register 214, the source,
upon triggering, knows precisely which destination units are
to receive frame data, and which source banks are to be used
for configuring the targeted destination units.

Additionally, to support the dual sensor configuration of
the illustrated embodiments, the ISP pipe processing logic 80
may operate in a single sensor configuration mode (e.g., only
one sensor is acquiring data) and/or a dual sensor configura-
tion mode (e.g., both sensors are acquiring data). In a typical
single sensor configuration, input data from a sensor interface
94, such as Sens0 (S0), is sent to StatsPipe0 (D2) (for statis-
tics processing) and RAWProc (D4) (for pixel processing). In
addition, sensor frames may also be sent to memory 100 (e.g.,
DO) for future processing, as discussed above.

An example of how the NextDestV1d fields corresponding
to each source of the ISP pipe processing logic 80 may be
configured when operating in a single sensor mode is
depicted below in Table 2.

TABLE 2

10

15

20

25

30

35

40

28

As mentioned above with reference to Table 1, the ISP pipe
processing logic 80 may be configured such that only certain
destinations are valid for a particular source. Thus, the desti-
nations in Table 2 marked with “N/A” or “0” are intended to
indicate that the ISP pipe processing logic 80 is not config-
ured to allow a particular source to send frame data to that
destination. For such destinations, the bits of the Next-
DestV1d field of the particular source corresponding to that
destination may always be 0. It should be understood, how-
ever, that this is merely one embodiment and, indeed, in other
embodiments, the ISP pipe processing logic 80 may be con-
figured such that each source is capable of targeting each
available destination unit.

The configuration shown above in Table 2 represents a
single sensor mode in which only Sensor0 90q is providing
frame data. For instance, the SensOGo register indicates des-
tinations as being SHODMA, StatsPipe0, RAWProc, Rgb-
Proc, and YCCProc. Thus, when triggered, each frame of the
SensorQ image data, is sent to these destinations (where data
is sent to RgbProc and YCCProc by way of RAWProc). As
discussed above, SIHODMA may store frames in memory 100
for later processing, StatsPipe0 may perform statistics collec-
tion, and RAWProc, RgbProc, and YCCProc may process the
image data using the statistics from the StatsPipe0. Further, in
some configurations where additional statistics are desired
(e.g., statistics in different color spaces), StatsPipel may also
be enabled (corresponding NextDestV1d set to 1) during the
single sensor mode. In such embodiments, the Sensor0 frame
data is sent to both StatsPipeO and StatsPipel. Further, as
shown in the present embodiment, only a single sensor inter-
face (e.g., SensO or alternatively Sen0) is the only active
source during the single sensor mode.

With this in mind, FIG. 16 provides a flowchart depicting a
method 240 for processing frame data in the ISP pipe pro-
cessing logic 80 when only a single sensor is active (e.g.,
Sensor 0). While the method 240 illustrates in particular the
processing of Sensor(Q frame data by The ISP pipe processing
logic 80 as an example, it should be understood that this
process may be applied to any other source and corresponding
destination unit in the ISP pipe processing logic 80. Begin-
ning at block 242, Sensor0 begins acquiring image data and
sending the captured frames to the ISP pipe processing logic
80. The control unit 190 may initialize programming of the go
register corresponding to SensO (the Sensor(Q interface) to

NextDestVId per source example: Single sensor mode

SifODMA SifIDMA StatsPipe0 StatsPipel RAWProc RgbProc YCCProc BEIF

(DO) (D1) (D2) (D3) (D4) (D3) (D6) (D7)
Sens0 1 N/A 1 0 1 1 1 0
(80)
Sens1 N/A 0 0 0 0 0 0 0
(81)
SensODMA N/A N/A 0 N/A 0 0 0 0
(82)
SensIDMA N/A N/A N/A 0 0 0 0 0
(83)
RawProcinDMA N/A N/A N/A N/A 0 0 0 0
(84)
RgbProcinDMA N/A N/A N/A N/A N/A 0 0 0
(85)
YeeProcinDMA N/A N/A N/A N/A N/A N/A 0 0
(86)
BEIFDMA N/A N/A N/A N/A N/A N/A N/A 0

(87)

US 9,105,078 B2

29

determine target destinations (including RAWProc) and what
bank registers to use, as shown at block 244. Thereafter,
decision logic 246 determines whether a source triggering
event has occurred. As discussed above, frame data input
from a sensor interface may use different triggering modes
(FIGS. 11-13). If a trigger event is not detected, the process
240 continues to wait for the trigger. Once triggering occurs,
the next frame becomes the current frame and is sent to
RAWProc (and other target destinations) for processing at
block 248. RAWProc may be configured using data param-
eters based on a corresponding data register specified in the
NextDestBk field of the SensOGo register. After processing of
the current frame is completed at block 250, the method 240
may return to block 244, at which the SensOGo register is
programmed for the next frame.

When both Sensor0 and Sensor1 of the ISP pipe processing
logic 80 are both active, statistics processing remains gener-
ally straightforward, since each sensor input may be pro-
cessed by a respective statistics logic, StatsPipe0 and
StatsPipel. However, because the illustrated embodiment of
the ISP pipe processing logic 80 provides only a single pixel
processing pipeline (RAWProc to RgbProc to YCCProc),
RAWProc, RgbProc, and YCCProc may be configured to
alternate between processing frames corresponding to Sen-
sorQ input data and frames corresponding to Sensorl input
data. As may be appreciated, the image frames are read from
RAWProc in the illustrated embodiment to avoid a condition
in which image data from one sensor is processed in real-time
while image data from the other sensor is not processed in
real-time. For instance, as shown in Table 3 below, which
depicts one possible configuration of NextDestV1d fields in
the go registers for each source when the ISP pipe processing
logic 80 is operating in a dual sensor mode, input data from
each sensor is sent to memory (SIfTODMA and SIf1DMA) and
to the corresponding statistics processing unit (StatsPipe0
and StatsPipel).

TABLE 3

10

15

20

25

30

30

With this in mind, FIG. 16 depicts a method 252 for pro-
cessing frame data in the ISP pipe processing logic 80 having
two sensors acquiring image data simultaneously. At block
254, both Sensor0 and Sensorl begin acquiring image
frames. As may be appreciated, SensorQ and Sensorl may
acquire the image frames using different frame rates, resolu-
tions, and so forth. At block 256, the acquired frames from
Sensor0 and Sensorl written to memory 100 (e.g., using
SIfODMA and SIf1DMA destinations). Next, source RAW-
ProcInDMA reads the frame data from the memory 100 in an
alternating manner, as indicated at block 258. As discussed,
frames may alternate between Sensor0 data and Sensor1 data
depending on frame rate at which the data is acquired. At
block 260, the next frame from RAWProcInDMA is acquired.
Thereatfter, at block 262, the NextDestV1d and NextDestBk
fields of the go register corresponding to the source, here
RAWProcInDMA,, is programmed depending on whether the
next frame is Sensor0 or Sensorl data. Thereafter, decision
logic 264 determines whether a source triggering event has
occurred. As discussed above, data input from memory may
be triggered by arming the go bit (e.g., “trigger-on-go”
mode). Thus, triggering may occur once the go bit of the go
register is set to 1. Once triggering occurs, the next frame
becomes the current frame and is sent to RAWProc for pro-
cessing at block 266. As discussed above, RAWProc may be
configured using data parameters based on a corresponding
data register specified in the NextDestBk field of the corre-
sponding go register. After processing of the current frame is
completed at block 268, the method 252 may return to block
260 and continue.

A further operational event that the ISP pipe processing
logic 80 may perform is a configuration change during image
processing. For instance, such an event may occur when the
ISP pipe processing logic 80 transitions from a single sensor
configuration to a dual sensor configuration, or vice-versa. As

NextDestVId per source example: Dual sensor mode

SifODMA SifIDMA StatsPipe0 StatsPipel RAWProc RgbProc YCCProc BEIF

(DO) (D1) (D2) (D3) (D4) (D3) (D6) (D7)
Sens0 1 N/A 1 0 0 0 0 0
(S0)
Sens1 N/A 1 0 1 0 0 0 0
(81)
SensODMA N/A N/A 0 N/A 0 0 0 0
(82)
SensIDMA N/A N/A N/A 0 0 0 0 0
(83)
RawProcinDMA N/A N/A N/A N/A 1 1 1 0
(54)
RgbProcinDMA N/A N/A N/A N/A N/A 0 0 0
(85)
YeeProcinDMA N/A N/A N/A N/A N/A N/A 0 0
(S6)
BEIFDMA N/A N/A N/A N/A N/A N/A N/A 0
(87)

The sensor frames in memory are sent to RAWProc from
the RAWProcInDMA source (S4), such that they alternate
between Sensor0 and Sensor] at a rate based on their corre-
sponding frame rates. For instance, if SensorO and Sensorl
are both acquiring image data at arate of 30 frames per second
(fps), then their sensor frames may be interleaved in a 1-to-1
manner. If Sensor0 (30 fps) is acquiring image data at a rate
twice that of Sensorl (15 fps), then the interleaving may be
2-to-1, for example. That is, two frames of Sensor0 data are
read out of memory for every one frame of Sensor1 data.

60

65

discussed above, the NextDestV1d fields for certain sources
may be different depending on whether one or both image
sensors are active. Thus, when the sensor configuration is
changed, the ISP pipe processing logic 80 control unit 190
may release all destination units before they are targeted by a
new source. This may avoid invalid configurations (e.g.,
assigning multiple sources to one destination). In one
embodiment, the release of the destination units may be
accomplished by setting the NextDestV1d fields of all the go
registers to 0, thus disabling all destinations, and arming the
go bit. After the destination units are released, the go registers

US 9,105,078 B2

31

may be reconfigured depending on the current sensor mode,
and image processing may continue.

A flowchart 270 for switching between single and dual
sensor configurations is shown in FIG. 18. Beginning at block
272, anext frame of image data from a particular source of the
ISP pipe processing logic 80 is identified. At block 274, the
target destinations (NextDestV1d) are programmed into the
go register corresponding to the source. Next, at block 1368,
depending on the target destinations, NextDestBk is pro-
grammed to point to the correct data registers associated with
the target destinations. Thereafter, decision logic 278 deter-
mines whether a source triggering event has occurred. Once
triggering occurs, the next frame is sent to the destination
units specified by NextDestV1d and processed by the desti-
nation units using the corresponding data registers specified
by NextDestBk, as shown at block 280. The processing con-
tinues until block 282, at which the processing of the current
frame is completed.

Subsequently, decision logic 284 determines whether there
is a change in the target destinations for the source. As dis-
cussed above, NextDestV1d settings of the go registers cor-
responding to SensO and Sensl may vary depending on
whether one sensor or two sensors are active. For instance,
referring to Table 2, if only Sensor0 is active, Sensor(data is
sentto SIFODMA, StatsPipe0, and RAWProc. However, refer-
ring to Table 3, if both Sensor0 and Sensorl are active, then
SensorQ data is not sent directly to RAWProc. Instead, as
mentioned above, SensorO and Sensorl data is written to
memory 100 and is read out to RAWProc in an alternating
manner by source RAWProcInDMA (S4). Thus, if no target
destination change is detected at decision logic 284, the con-
trol unit 190 deduces that the sensor configuration has not
changed, and the method 270 returns to block 276, whereas
the NextDestBk field of the source go register is programmed
to point to the correct data registers for the next frame, and
continues.

I, however, at decision logic 284, a destination change is
detected, the control unit 190 may determine that a sensor
configuration change has occurred. This could represent, for
example, switching from single sensor mode to dual sensor
mode, or shutting off the sensors altogether. Accordingly, the
method 270 continues to block 286, at which all bits of the
NextDestV1d fields for all go registers are set to 0, thus effec-
tively disabling the sending of frames to any destination on
the next trigger. Then, at decision logic 288, a determination
is made as to whether all destinations have transitioned to an
idle state. If not, the method 270 waits at decision logic 288
until all destinations units have completed their current opera-
tions. Next, at decision logic 290, a determination is made as
to whether image processing is to continue. For instance, if
the destination change represented the deactivation of both
Sensor0 and Sensor 1, then image processing ends at block
292. However, if it is determined that image processing is to
continue, then the method 270 returns to block 274 and the
NextDestV1d fields of the go registers are programmed in
accordance with the current operation mode (e.g., single sen-
sor or dual sensor). As shown here, the steps 284-292 for
clearing the go registers and destination fields may collec-
tively be referred to by reference number 294.

Next, FIG. 19 shows a further embodiment by way of the
flowchart (method 296) that provides for another dual sensor
mode of operation. The method 296 depicts a condition in
which one sensor (e.g., Sensor0) is actively acquiring image
data and sending the image frames to The ISP pipe processing
logic 80 for processing, while also sending the image frames
to StatsPipe0 and/or memory 100 (Sif0ODMA), while the other
sensor (e.g., Sensorl) is inactive (e.g., turned off), as shown at

20

35

40

45

55

32

block 298. Decision logic 300 then detects for a condition in
which Sensorl will become active on the next frame to send
image data to RAWProc. If this condition is not met, then the
method 296 returns to block 298. However, ifthis condition is
met, then the method 296 proceeds by performing action 294
(collectively steps 284-292 of F1G. 19), whereby the destina-
tion fields ofthe sources are cleared and reconfigured at block
294. For instance, at block 294, the NextDestVI1d field of the
go register associated with Sensor]l may be programmed to
specify RAWProc as a destination, as well as StatsPipel
and/or memory (SifIDMA), while the NextDestV1d field of
the go register associated with Sensor0 may be programmed
to clear RAWProc as a destination. In this embodiment,
although frames captured by Sensor0 are not sent to RAW-
Proc on the next frame, Sensor0) may remain active and con-
tinue to send its image frames to StatsPipe0, as shown at step
302, while Sensorl captures and sends data to RAWProc for
processing at step 304. Thus, both sensors, Sensor0 and Sen-
sorl may continue to operate in this “dual sensor” mode,
although only image frames from one sensor are sent to
RAWProc for processing. For the purposes of this example, a
sensor sending frames to RAWProc for processing may be
referred to as an “active sensor,” a sensor that is not sending
frame RAWProc but is still sending data to the statistics
processing units may be referred to as a “semi-active sensor,”
and a sensor that is not acquiring data at all may be referred to
as an “inactive sensor.”’

One benefit of the foregoing technique is that the because
statistics continue to be acquired for the semi-active sensor
(Sensor0), the next time the semi-active sensor transitions to
an active state and the current active sensor (Sensorl) transi-
tions to a semi-active or inactive state, the semi-active sensor
may begin acquiring data within one frame, since color bal-
ance and exposure parameters may already be available due to
the continued collection of image statistics. This technique
may be referred to as “hot switching” of the image sensors,
and avoids drawbacks associated with “cold starts” of the
image sensors (e.g., starting with no statistics information
available). Further, to save power, since each source is asyn-
chronous (as mentioned above), the semi-active sensor may
operate at a reduced clock and/or frame rate during the semi-
active period.

ISP Memory Format

Before continuing with a more detailed description of the
statistics processing and pixel processing operations depicted
inthe ISP pipe processing logic 80 of FIG. 8, it is believed that
a brief introduction regarding several types of memory
addressing formats that may be used with the disclosed tech-
niques, as well as a definition of various ISP frame regions,
will help to facilitate a better understanding of the present
subject matter.

FIG. 20 illustrates a linear addressing mode that may be
applied to pixel data received from the image sensor(s) 90 and
stored into memory (e.g., 100). The depicted example may be
based upon a host interface block request size of 64 bytes. As
may be appreciated, other embodiments may use different
block request sizes (e.g., 32 bytes, 128 bytes, and so forth). In
the linear addressing mode shown in FIG. 20, image samples
are located in memory in sequential order. The term “linear
stride” specifies the distance in bytes between 2 adjacent
vertical pixels. In the present example, the starting base
address of a plane is aligned to a 64-byte boundary and the
linear stride may be a multiple of 64 (based upon the block
request size).

With this in mind, various frame regions that may be
defined within an image source frame are illustrated in FIG.
21. The format for a source frame provided to the image

US 9,105,078 B2

33

processing circuitry 32 may use the linear addressing mode
discussed above, and may use pixel formats in 8, 10, 12, 14,
or 16-bit precision (which ultimately may be converted to
signed 17-bit format for image processing). The image source
frame 306, as shown in FIG. 21, may include a sensor frame
region 308, a raw frame region 308, and an active region 310.
The sensor frame 308 is generally the maximum frame size
that the image sensor 90 can provide to the image processing
circuitry 32. The raw frame region 310 may be defined as the
region of the sensor frame 308 that is sent to the ISP pipe
processing logic 80. The active region 312 may be defined as
a portion of the source frame 306, typically within the raw
frame region 310, on which processing is performed for a
particular image processing operation. In accordance with an
embodiment, the active region 312 may be the same or may be
different for different image processing operations.

In accordance with aspects of the present technique, the
ISP pipe processing logic 80 only receives the raw frame 310.
Thus, for the purposes of the present discussion, the global
frame size for the ISP pipe processing logic 80 may be
assumed as the raw frame size, as determined by the width
314 and height 316. In some embodiments, the offset from the
boundaries of the sensor frame 308 to the raw frame 310 may
be determined and/or maintained by the control logic 84. For
instance, the control logic 84 may be include firmware that
may determine the raw frame region 310 based upon input
parameters, such as the x-offset 318 and the y-offset 320, that
are specified relative to the sensor frame 308. Further, in some
cases, a processing unit within the ISP pipe processing logic
80 or the ISP pipe logic 82 may have a defined active region,
such that pixels in the raw frame but outside the active region
312 will not be processed, i.e., will left unchanged. For
instance, an active region 312 for a particular processing unit
having a width 322 and height 324 may be defined based upon
an x-offset 326 and y-offset 328 relative to the raw frame 310.
Further, where an active region is not specifically defined, one
embodiment of the image processing circuitry 32 may
assume that the active region 312 is the same as the raw frame
310 (e.g., x-offset 326 and y-offset 328 are both equal to 0).
Thus, for the purposes of image processing operations per-
formed on the image data, boundary conditions may be
defined with respect to the boundaries of the raw frame 310 or
active region 312. Additionally, in some embodiments, a win-
dow (frame) may be specified by identifying a starting and
ending location in memory, rather than a starting location and
window size information.

In some embodiments, the ISP pipe processing logic 80
(RAWProc) may also support processing an image frame by
way of overlapping vertical stripes, as shown in FIG. 22. For
instance, image processing in the present example may occur
in three passes, with a left stripe (Stripe0), a middle stripe
(Stripel), and a right stripe (Stripe2). This may allow the ISP
pipe processing logic 80 to process a wider image in multiple
passes without the need for increasing line buffer size. This
technique may be referred to as “stride addressing.”

When processing an image frame by multiple vertical
stripes, the input frame is read with some overlap to allow for
enough filter context overlap so that there is little or no dif-
ference between reading the image in multiple passes versus
a single pass. For instance, in the present example, Stripe0
with a width SrcWidthO and Stripel with a width SrcWidthl
partially overlap, as indicated by the overlapping region 330.
Similarly, Stripel also overlaps on the right side with Stripe2
having a width of SrcWidth2, as indicated by the overlapping
region 332. Here, the total stride is the sum of the width of
each stripe (SrcWidthO, SrcWidth1, SrcWidth2) minus the
widths (334, 336) of the overlapping regions 330 and 332.

10

15

20

25

30

35

40

45

50

55

60

34

When writing the image frame to memory (e.g., 108), an
active output region is defined and only data inside the output
active region is written. As shown in FIG. 22, on a write to
memory, each stripe is written based on non-overlapping
widths of ActiveDst0, ActiveDstl, and ActiveDst2.

Additionally or alternatively, the ISP pipe processing logic
80 may support processing an image frame 5250 by way of
overlapping tiles, as shown in FIG. 222. In the example of
FIG. 222, processing all or part of an image frame in this way
may involve processing six tiles 5252 (TileO-Tile5) in six
different passes in a 3x2 grid. As should be appreciated, any
other suitable number of tiles may be processed. As with
vertical stripe processing, the input tiles 5252 are read in to
the ISP pipe processing logic 80 so as to allow sufficient
overlap 5254 to permit filter context overlap. Doing this may
avoid artifacts that might otherwise arise when the processed
tiles 5252 are put back together in a final image. Thus, the
source stride 5256 may include the sum of tile source widths
5258, each of which may overlap the other. Likewise, tile
source heights 5260 may also overlap one another. The des-
tination stride 5262 of the processed image frame may be the
same as the source stride 5256. The active destination widths
5264 cach may extend to a point within the overlapping area
of the source widths 5258, and the destination heights 5266
may extend to a point within the overlapping area of the
source heights 5260.

Using tile processing as shown in FIG. 222, input frames
may be read with overlap to allow for enough filter context
overlap so that there are few, if any, differences between one
pass or multiple passes. As such, the DMA input to the ISP
pipe processing logic 80 may read the additional pixel to
accommodate the filter context of the component(s) of the ISP
pipe processing logic 80 to which the data is sent. Namely,
each pixel DMA output channel may define an active output
region. The DMA may receive data for the entire processing
frame size, but only those pixels that fall inside the active
output region may be written to DMA. Software controlling
the ISP pipe processing logic 80 may program the DMA
registers to allow enough overlap for the context of the com-
ponent(s) of the ISP pipe processing logic 80 to which the
data is sent.

As discussed above, the image processing circuitry 32 may
receive image data directly from a sensor interface (e.g., 94)
or may receive image data from memory 100 (e.g., DMA
memory). Where incoming data is provided from memory,
the image processing circuitry 32 and the ISP pipe processing
logic 80 may be configured to provide for byte swapping,
wherein incoming pixel data from memory may be byte
swapped before processing. In one embodiment, a swap code
may be used to indicate whether adjacent double words,
words, half words, or bytes of incoming data from memory
are swapped. For instance, referring to FIG. 23, byte swap-
ping may be performed on a 16 byte (bytes 0-15) set of data
using a four-bit swap code.

As shown, the swap code may include four bits, which may
be referred to as bit3, bit2, bitl, and bit0, from left to right.
When all bits are set to 0, as shown by reference number 338,
no byte swapping is performed. When bit3 is set to 1, as
shown by reference number 340, double words (e.g., 8 bytes)
are swapped. For instance, as shown in FIG. 25, the double
word represented by bytes 0-7 is swapped with the double
word represented by bytes 8-15. Ifbit2 is set to 1, as shown by
reference number 342, word (e.g., 4 bytes) swapping is per-
formed. In the illustrated example, this may result in the word
represented by bytes 8-11 being swapped with the word rep-
resented by bytes 12-15, and the word represented by bytes
0-3 being swapped with the word represented by bytes 4-7.

US 9,105,078 B2

35

Similarly, if bitl is set to 1, as shown by reference number
344, then half word (e.g., 2 bytes) swapping is performed
(e.g., bytes 0-1 swapped with bytes 2-3, etc.) and if bit0 is set
to 1, as shown by reference number 346, then byte swapping
is performed.

In the present embodiment, swapping may be performed in
by evaluating bits 3, 2, 1, and 0 of the swap code in an ordered
manner. For example, if bits 3 and 2 are setto avalue of 1, then
double word swapping (bit3) is first performed, followed by
word swapping (bit2). Thus, as shown in FIG. 23, when the
swap codeis setto “1111,” the end result is the incoming data
being swapped from little endian format to big endian format.

Various read and write channels to memory 100 may be
employed by the ISP pipe processing logic 80. In one embodi-
ment, the read/write channels may share a common data bus,
which may be provided using Advanced Microcontroller Bus
Architecture, such as an Advanced Extensible Interface
(AXI) bus, or any other suitable type of bus (AHB, ASB,
APB, ATB, etc.). Depending on the image frame information
(e.g., pixel format, address format, packing method) which,
as discussed above, may be determined via a control register,
an address generation block, which may be implemented as
part of the control logic 84, may be configured to provide
address and burst size information to the bus interface. By
way of example the address calculation may depend various
parameters, such as whether the pixel data is packed or
unpacked, the pixel data format (e.g., RAWS, RAWI0,
RAW12, RAW14, RAW16, RGB, or YCbCr/YUV formats),
whether tiled or linear addressing format is used, x- and
y-offsets of the image frame data relative to the memory array,
as well as frame width, height, and stride. Further parameters
that may be used in calculation pixel addresses may include
minimum pixel unit values (MPU), offset masks, a byte per
MPU value (BPPU), and a Log 2 of MPU value (L2MPU).
Table 4, which is shown below, illustrates the aforementioned
parameters for packed and unpacked pixel formats, in accor-
dance with an embodiment.

TABLE 4
Definition of L2MPU & BPPU
MPU L2MPU BPPU
(Minimum (Log2 Offset- (Bytes
Format Pixel Unit) of MPU) Mask Per MPU)
RAWS Unpacked 1 0 0 1
RAW10 Packed 4 2 3 5
Unpacked 1 0 0 2
RAW12 Packed 4 2 3 6
Unpacked 1 0 0 2
RAW14 Packed 4 2 3 7
Unpacked 1 0 0 2
RAW16 Unpacked 1 0 0 2
RGB-888 1 0 0 4
RGB-666 1 0 0 4
RGB-565 1 0 0 2
RGB-16 1 0 0 8
YCC8_420 (2 Plane) 2 1 0 2
YCC10_420 (2 Plane) 2 1 0 4
YCC8_422 (2 Plane) 2 1 0 2
YCC10_422 (2 Plane) 2 1 0 4
YCC8_422 (1 Plane) 2 1 0 4
YCC10_422 (1 Plane) 2 1 0 8

As should be understood, the MPU and BPPU settings allow
the image processing circuitry 32 to assess the number of
pixels that need to be read in order to read one pixel, even if
not all of the read data is needed. That is, the MPU and BPPU
settings may allow the image processing circuitry 32 read in
pixel data formats that are both aligned with (e.g., a multiple

10

15

20

25

30

35

40

45

50

55

60

65

36

of'8 bits (1 byte) is used to store a pixel value) and unaligned
with memory byte (e.g., pixel values are stored using fewer or
greater than a multiple of 8 bits (1 byte), such as RAW10,
RAWI12, etc.). It may be noted that OffsetX may always be a
multiple of two for all of the YCC formats. For 4:2:0 YCC
formats, OffsetY may always be a multiple of two.

Referring to FIG. 24, an example showing the location of
animage frame 350 stored in memory under linear addressing
is illustrated, which each block representing 64 bytes (as
discussed above in FIG. 21). In FIG. 24, the Stride is 4,
meaning 4 blocks of 64 bytes. Referring to Table 4 above, the
values for L2MPU and BPPU may depend on the format of
the pixels in the frame 350. Software may program the base
address (BaseAddr) of the frame in memory, along with Oft-
setX, OffsetY, Width, and Height in pixel units and the Stride
in block units. These may be determined using the values of
L2MPU and BPPU corresponding to the pixel format of the
frame 350. The image processing circuitry 32 may calculate
the position for the first pixel to fetch from the memory 100 at
the BlockStart address.

Various memory formats of the image pixel data that may
be supported by the image processing circuitry 32 will now be
discussed in greater detail. These formats may include raw
image data (e.g., Bayer RGB data), RGB colordata, and YUV
(YCC, luma/chroma data). First, formats for raw image pixels
(e.g., Bayer data before demosaicing) in a destination/source
frame that may be supported by embodiments of the image
processing circuitry 32 are discussed. As mentioned, certain
embodiments may support processing of image pixels at 8,
10, 12, 14, and 16-bit precision (scaled and offset to a signed
17-bit format). In the context of raw image data, 8, 10, 12, 14,
and 16-bit raw pixel formats may be referred to herein as
RAWS, RAW10, RAW12, RAW14, and RAW16 formats,
respectively. Examples showing how each of the RAWS,
RAW10, RAW12, RAW14, and RAW16 formats may be
stored in memory are shown graphically unpacked forms in
FIG. 25. For raw image formats having a bit-precision greater
than 8 bits (and not being a multiple of 8-bits), the pixel data
may also be stored in packed formats. For instance, FIG. 26
shows an example of how RAW10 image pixels may be stored
in memory. Similarly, FIG. 27 and FIG. 28 illustrate examples
by which RAW12 and RAW14 image pixels may be stored in
memory. As will be discussed further below, when image data
is being written to/read from memory, a control register asso-
ciated with the sensor interface 94 may define the destination/
source pixel format, whether the pixel is in a packed or
unpacked format, addressing format (e.g., linear or tiled), and
the swap code. Thus, the manner in which the pixel data is
read and interpreted by, the image processing circuitry 32
may depend on the pixel format.

The image signal processing (ISP) circuitry 32 may also
support certain formats of RGB color pixels in the sensor
interface source/destination frame (e.g., 310). For instance,
RGB image frames may be received from the sensor interface
(e.g., in embodiments where the sensor interface includes
on-board demosaicing logic) and saved to memory 100. In
one embodiment, the ISP pipe processing logic 80 (RAW-
Proc) may bypass pixel and statistics processing when RGB
frames are being received. By way of example, the image
processing circuitry 32 may support the following RGB pixel
formats: RGB-565 and RGB-888. An example of how RGB-
565 pixel data may be stored in memory is shown in FIG. 29.
As illustrated, the RGB-565 format may provide one plane of
an interleaved 5-bit red color component, 6-bit green color
component, and 5-bit blue color component in RGB order.
Thus, 16 bits total may be used to represent an RGB-565 pixel
(e.g., {RO, GO, B0} or {R1, G1, B1}).

US 9,105,078 B2

37

An RGB-888 format, as depicted in FIG. 30, may include
one plane of interleaved 8-bit red, green, and blue color
components in RGB order. In one embodiment, the image
processing circuitry 32 may also support an RGB-666 format,
which generally provides one plane of interleaved 6-bit red,
green and blue color components in RGB order. In such
embodiments, when an RGB-666 format is selected, the
RGB-666 pixel data may be stored in memory using the
RGB-888 format shown in FIG. 30, but with each pixel left
justified and the two least significant bits (L.SB) set as zero.

In certain embodiments, the image processing circuitry 32
may also support RGB pixel formats that allow pixels to have
extended range and precision of floating point values. For
instance, in one embodiment, the image processing circuitry
32 may support the RGB pixel format shown in FIG. 31,
wherein a red (R0), green (GO), and blue (BO) color compo-
nent is expressed as an 8-bit value, with a shared 8-bit expo-
nent (EO). Thus, in such embodiments, the actual red (R'),
green (G') and blue (B') values defined by R0, GO, BO, and EO
may be expressed as:

R'=RO[7:0]*2"E0[7:0]
G'=GO[T:01*2"E0[7:0]

B'=B0[7:0]*2"E0[7:0]

This pixel format may be referred to as the RGBE format,
which is also sometimes known as the Radiance image pixel
format.

FIGS. 32 and 33 illustrate additional RGB pixel formats
that may be supported by the image processing circuitry 32.
Particularly, FIG. 32 depicts a pixel format that may store
9-bit red, green, and blue components with a 5-bit shared
exponent. For instance, the upper eight bits [8:1] of each red,
green, and blue pixel are stored in respective bytes in memory.
An additional byte is used to store the 5-bit exponent (e.g.,
EO0[4:0]) and the least significant bit [0] of each red, green,
and blue pixel. Thus, in such embodiments, the actual red
(R"), green (G') and blue (B') values defined by R0, GO, BO,
and EO may be expressed as:

R'=RO[8:0]*2"E0[4:0]
G'=GO[8:01*2"E0[4:0]

B'=R0[8:0]*2"E0[4:0]

Further, the pixel format illustrated in FI1G. 32 is also flexible
in that it may be compatible with the RGB-888 format shown
in FIG. 30. For example, in some embodiments, the image
processing circuitry 32 may process the full RGB values with
the exponential component, or may also process only the
upper 8-bit portion [7:1] of each RGB color component in a
manner similar to the RGB-888 format.

FIG. 33 depicts a pixel format that may store 10-bit red,
green, and blue components with a 2-bit shared exponent. For
instance, the upper 8-bits [9:2] of each red, green, and blue
pixel are stored in respective bytes in memory. An additional
byte is used to store the 2-bit exponent (e.g., E0[1:0]) and the
least significant 2-bits [1:0] of each red, green, and blue pixel.
Thus, in such embodiments, the actual red (R"), green (G') and
blue (B') values defined by RO, GO, B0, and EO may be
expressed as:

R'=R0[9:0]*2"E0[1:0]
G'=GO[9:01*2"E0[1:0]

B'=R0[9:0]*2"E0[1:0]

10

15

20

25

30

35

40

45

50

55

60

65

38

Additionally, like the pixel format shown in FIG. 32, the pixel
format illustrated in FIG. 33 is also flexible in that it may be
compatible with the RGB-888 format shown in FIG. 30. For
example, in some embodiments, the image processing cir-
cuitry 32 may process the full RGB values with the exponen-
tial component, or may also process only the upper 8-bit
portion (e.g., [9:2]) of each RGB color component in a man-
ner similar to the RGB-888 format.

In addition, the image processing circuitry 32 may support
16-bit RGB format known as RGB-16. With RGB-16, one
plane of interleaved 16-bit components in ARGB order, as
illustrated in FIG. 34. For the RGB-888 format shown in FIG.
30 and the RGB-16 format shown in FIG. 34, alpha may be set
to OxFF and OxFFFF, respectively, when pixel data is written
to external memory 100. Alpha may be ignored when reading
RGB-888 or RGB-16 formatted data from the memory 100.
Image data of the RGB-16 format may not be supported from
the sensor 90 outputs.

The image processing circuitry 32 may also further support
certain formats of YCbCr (YUV) luma and chroma pixels in
the sensor interface source/destination frame (e.g., 310). For
instance, YCbCr image frames may be received from the
sensor interface (e.g., in embodiments where the sensor inter-
face includes on-board demosaicing logic and logic config-
ured to convert RGB image data into a YCC color space) and
saved to memory 100 and/or the output of the RgbProc 160 in
YCC format may be saved to memory 100. In one embodi-
ment, the ISP pipe processing logic 80 may bypass pixel and
statistics processing when YCbCr frames are being received.
By way of example, the image processing circuitry 32 may
support the following YCbCr pixel formats: YCbCr4:4:4
16-bit, 1-plane; YCbCr-4:2:0 10-bit, 2-plane; YCbCr-4:2:2
10-bit, 1-plane; YCbCr-4:2:0 8-bit, 2-plane; and YCbCr-4:
2:2 8-bit, 1-plane.

The YCbCr4:4:4 16-bit, 1-plane format may provide a
single image plane with interleaved 16-bit components, as
generally shown by FIG. 35. That is, both luma pixels (Y) and
chroma pixels (Cb and Cr) may be represented in the same
plane of memory in the YCbCr4:4:4 16-bit, 1-plane format. It
may be noted that the YCbCr4:4:4 16-bit, 1-plane format is
related to the RGB-16 format shown in FIG. 34.

The YCbCr-4:2:0, 8-bit, 2 plane pixel format and the
YCbCr-4:2:0, 10-bit, 2 plane pixel format may provide two
separate image planes in memory, one for luma pixels (Y) and
one for chroma pixels (Cb, Cr), wherein the chroma plane
interleaves the Cb and Cr pixel samples. Additionally, the
chroma plane may be subsampled by one-half in both the
horizontal (x) and vertical (y) directions. An example show-
ing how YCbCr-4:2:0, 2 plane, data may be stored in memory
is shown in FIG. 36, which depicts a luma plane 347 for
storing the luma (Y) samples and a chroma plane 348 for
storing chroma (Cb, Cr) samples. An example showing how
YCbCr-4:2:0, 10-bit, 2 plane pixel data may be stored in the
memory 100 appears in FIG. 37.

A YCbCr-4:2:2 8-bit, 1 plane format, which is shown in
FIG. 38, may include one image plane of interleaved luma (Y)
and chroma (Cb, Cr) pixel samples, with the chroma samples
being subsampled by one-half both the horizontal (x) and
vertical (y) directions. An example of a YCbCr-4:2:2 10-bit,
1-plane format appears in FIG. 39. In some embodiments, the
image processing circuitry 32 may also support 10-bitYCbCr
pixel formats by saving the pixel samples to memory using
the above-described 8-bit format with rounding (e.g., the two
least significant bits of the 10-bit data are rounded off). Fur-
ther, as may be appreciated, YC1C2 values may also be stored
using any of the RGB pixel formats discussed above in FIGS.

US 9,105,078 B2

39

29-34, wherein each of the Y, C1, and C2 components are
stored in a manner analogous to an R, G, and B component.

As shown above in Table 4, for pixels stored in RAW10,
RAWI12, and RAW14 packed formats, four pixels make a
minimum pixel unit (MPU) of five, six, or seven bytes
(BPPU), respectively. For instance, referring to the RAW10
pixel format example shown in FIG. 26, an MPU of four
pixels PO-P3 includes 5 bytes, wherein the upper 8 bits of each
of'the pixels PO-P3 are stored in four respective bytes, and the
lower 2 bytes of each of the pixels are stored in bits 0-7 of the
32-bit address 01h. Similarly, referring back to FIG. 27, an
MPU of four pixels PO-P3 using the RAW 12 format includes
6 bytes, with the lower 4 bits of pixels PO and P1 being stored
in the byte corresponding to bits 16-23 of address 00h and the
lower 4 bits of pixels P2 and P3 being stored in the byte
corresponding to bits 8-15 of address 01h. FIG. 28 shows an
MPU offour pixels PO-P3 using the RAW 14 format as includ-
ing 7 bytes, with 4 bytes for storing the upper 8 bits of each
pixel of the MPU and 3 bytes for storing the lower 6 bits of
each pixel of the MPU.

Using these pixel formats, it is possible at the end of a
frame line to have a partial MPU where less than four pixels
of'the MPU are used (e.g., when the line width modulo four is
non-zero). When reading a partial MPU, unused pixels may
be ignored. Similarly, when writing a partial MPU to a des-
tination frame, unused pixels may be written with a value of
zero. Further, in some instances, the last MPU of a frame line
may not align to a 64-byte block boundary. In one embodi-
ment, bytes after the last MPU and up to the end of the last
64-byte block are not written.

Scale and Offset Logic

As will be discussed in greater detail below, pixel process-
ing through certain functional blocks of the ISP pipe process-
ing logic 80 may take place in a signed format. The signed
image data may employ an offset allowing for greater head-
room than footroom. Moreover, by offsetting input pixels to
allow for some negative values, using signed image data
instead of unsigned image data for image processing may
preserve more image information in the final, processed
image. In some embodiments, the signed format may be
signed 17-bit data, but any other suitable size may be
employed. Using 17-bit image data, the source pixel data may
take up two bytes to simplify memory, and one bit may be
added to account for sign. Using 9-bit data, the source pixel
data may take up one byte. Any other suitable signed format
may be employed. For example, the signed format may be
signed 10-bit, 11-bit, 12-bit, 13-bit, 14-bit, 15-bit, or less than
9-bit or greater than 17-bit. Indeed, in some embodiments, the
image data may be signed 25-bit image data or signed 33-bit
image data to allow for signed versions of image data of 3 or
4 bytes. Accordingly, it should be understood that when the
present disclosure refers to “signed 17-bit,” any other suitable
bit depth may be employed. Moreover, although the present
disclosure refers to signed 17-bit image data, floating point
image data may alternatively be used (e.g., 9.3). Before and
after processing image data in certain functional blocks of the
ISP pipe processing logic 80, the scale and offset logic 82 may
convert unsigned image data into signed image data.

A flowchart 360 of FIG. 40 provides an example of image
processing involving signed image data. The flowchart 360
may begin when the ISP pipe processing logic 80 is pro-
grammed to receive image data from the memory 100 in an
unsigned format (block 361). For instance, the StatsPipe0
140a, the StatsPipel 1405, the RAWProc 150, and the Rgb-
Proc 160 may be programmed to receive raw image data,
which may be stored in the memory 100 in one of the RAWS,
RAW10, RAW12, RAW14, or RAW16 image data formats.

20

30

40

45

40

As mentioned above, the scale and offset logic 82 may rep-
resent logical offset and scale functions implemented on both
DMA input and DMA output pixel channels. The pixel offset
and scale functions of the scale and offset logic 82 may be
applied to all supported formats of raw image data (e.g.,
RAWS, RAW10, RAW12, RAW14, and/or RAW16), all sup-
ported formats of RGB pixel data (e.g., RGB-565, RGB-888,
RGB-16), and YCC pixel data of the YCC4:4:4 format. In
transferring the unsigned image data from the memory 100
and/or the sensors 90a and 905, the scale and offset logic 82
may convert the unsigned image data to a signed format (e.g.,
signed 17-bit) by applying a programmable scale and/or off-
set to the image data (block 362).

As mentioned above, the ISP pipe processing logic 80 may
perform various image processing operations using signed
image data to preserve image information (block 363). For
instance, operations that produce negative pixel values as
outputs or interim pixel values could lose image information
if these pixels were merely clipped to zero. Although negative
pixel values could not be displayed on a display 28—the
lowest pixel value will typically be 0 (black)—allowing nega-
tive pixel values during interim processing may preserve
image information for pixels at or near the color black in the
final processed image. To provide a brief example, noise on
the image sensor(s) 90 may occur in a positive or negative
direction from the correct value. In other words, some pixels
that should represent a particular light intensity may have a
particular value, others may have noise resulting in values
greater than the particular value, and still others may have
noise resulting in values less than the particular value. When
an area of the image sensor(s) 90 captures little or no light,
sensor noise may increase or decrease individual pixel values
such that the average pixel value is about zero. Thus, when
image data from the sensor(s) 90 is processed by the scale and
offset logic 82, the pixel values may be offset so as to preserve
the negative noise values rather than clipping the negative
noise values away. In particular, if only noise occurring in a
negative direction were discarded, the true black color could
rise above zero and could produce grayish-tinged black areas.
Thus, by using signed image data, the ISP pipe processing
logic 80 may more accurately render dark black areas in
images.

When the ISP pipe processing logic 80 has finished per-
forming one or more operations on the image data, the image
data may be programmed to be stored in a location of the
memory 100. Before being stored in the memory 100, the
scale and offset logic 82 may convert the signed image data
back to an unsigned format (block 364).

Before image data is converted from unsigned data to
signed data, whether from the sensor interfaces 94a (SO) or
945 (S1) or from the memory 100 (S2-S6), pixel data first may
be scaled to encompass 16 bits. For example, the scale and
offset logic 82 may convert input pixels of bit depths less than
16 bits to an unsigned 16-bit format by shifting the input
pixels to the left to fit the 16-bit scale. In addition, the scale
and offset logic 82 may, but not necessarily, replicate the most
significant bits (MSBs) of the input pixel in the remaining
least significant bits (LLSBs). The results of scaling various
formats with bit depths of less than 16 bits unsigned 16-bit
pixels are shown in FIG. 41. As shown in FIG. 41, when pixels
in the RAWS format (numeral 365) are scaled to 16 bits, the
entire pixel may be replicated in the LSBs; when pixels in the
RAW10 format (numeral 366) are scaled to 16 bits, the upper
6 bits may be replicated in the LSBs; when pixels in the
RAWI12 format (numeral 367) are scaled to 16 bits, the upper
4 bits may be replicated in the [L.SBs; when pixels in the
RAW14 format (numeral 368) are scaled to 16 bits, the upper

US 9,105,078 B2

41

2 bits may be replicated in the L.SBs; and, since pixels in the
RAWI16 format (numeral 369) already take up 16 bits, these
pixels need not be scaled. The same procedure illustrated by
FIG. 41 may also be applied to the RGB-565 and RGB-888
formats.

Such 16-bit unsigned image data may be converted to
signed 17-bit image data as shown in a flowchart 370 of FIG.
42. The flowchart 370 may begin when input pixels are pro-
grammed to be transferred to a processing block of the ISP
pipe processing logic 80 that receives signed 17-bit input data
(block 371). Pixels with bit depths ofless than 16 bits may be
scaled to an unsigned 16-bit format in the manner of FIG. 41
(block 372). The scale and offset logic 82 then may apply a
programmable scale and offset to the unsigned 16-bit pixels
(block 373).

First, the scale and offset logic 82 may scale the input
pixels by some scale value (block 374). The scale value may
be programmable. In the example of FIG. 42, the scale and
offset logic 82 may scale the input pixels using a right-shift
operation, but other embodiments may involve any other
suitable scaling logic (e.g., multiplication logic). Software
may vary the scale value depending, for example, on the
original format of the input pixel and/or other expected gains
that will be applied during image processing. By way of
example, the programmable scale value may be a right-shift
of 0 to 8. Scaling the input pixels may enable software to
control the amount of headroom in the pixel pipeline to
accommodate the various gains applied in the ISP pipe pro-
cessing logic 80. Thus, the input pixels will be less likely to
lose information after gains are applied. In the case of RGB
image data, the same or a different scale may be appliedto R,
G, and B channels.

After scaling, the scale and offset logic 82 may subtract an
offset value from the scaled pixel (block 375). Subtracting the
offset value sets a zero-value in the now-signed 17-bit data,
allowing negative pixel values from the sensor to enter the ISP
pipe processing logic 80. The offset value may be, as indi-
cated in FIG. 42, a programmable 16-bit value. In other
embodiments, the offset value may have a depth other than
16-bits. In the case of RGB image data, the same offset value
may be appliedto R, G, and B channels. Subtracting the offset
value may provide software the ability to program the range
available for negative pixel values through the ISP pipe pro-
cessing logic 80. Specifically, by appropriately biasing the
input pixel value range using the offset value, potential over-
flow and underflow conditions in the ISP pipe processing
logic 80 may be avoided. After subtracting the offset value,
the scale and offset logic 82 may output the input pixel in
17-bit signed format. The resulting 17-bit signed pixel value
may be used by the ISP pipe processing logic 80 to perform
various image processing operations, as will be discussed in
greater detail below (block 376).

After some interim processing, it may be desirable to write
pixel values to the memory 100. Since the pixels may have
been processed in the 17-bit format, these pixels first may be
converted back to the unsigned 16-bit format before being
stored in the memory 100. One example of this conversion is
described by a flowchart 380 of FIG. 43. At various stages of
processing through the ISP pipe processing logic 80, image
data that has been partially processed may be transferred to
the memory 100. Thus, the flowchart 380 may begin when the
memory 100 is programmed to receive signed 17-bit pixels
out of the ISP pipe processing logic 80 (block 381).

Before storing the pixels in the memory 100, the program-
mable scale and offset logic 82 may de-apply the program-
mable scale and offset to convert the image data from the
signed 17-bit format back to the unsigned 16-bit format

10

15

20

25

30

35

40

45

50

55

60

65

42

(block 382). Specifically, the scale and offset logic 82 may
first add the 16-bit offset value back into the pixel (block 383).
Adding the offset value back into the pixel brings the pixel
value back to an unsigned 16-bit range. Thus, the scale and
offset logic 82 may also clip the pixel to the extent that the
pixel value falls outside of the 16-bit range (block 384). The
scale and offset logic 82 next may scale the pixel by the scale
value (block 385). In some embodiments, the scale and offset
logic 82 may left-shift the pixel, while in others, the scale and
offset logic 82 may multiply the pixel by some value. The
scale function essentially enable software to convert from a
smaller pixel range used by the ISP pipe processing logic 80
to a larger range used by the memory 100. For instance, if the
pixel value used by a process of the ISP pipe processing logic
80 employs a 10-bit format, the pixels may be converted to
16-bits in memory by left-shifting the pixel data by 6 before
writing to the memory 100. Additionally, in some embodi-
ments, the most significant bits (MSB) of the pixel may be
replicated into the least significant bits (LSB) (block 386). In
other embodiments, the actions of block 386 may not be
carried out.

The scale and offset logic 82 thus will have converted the
signed 17-bit pixels back to the unsigned 16-bit format. The
upper bits of the 16-bit range may then be used to send pixel
data to the DM A memory 100 (block 387). The number of the
upper bits used to send the pixel data to the memory 100 may
vary depending on the format of the image data. For example,
RAWS image data may use bits [15:8], RAW10 may use bits
[15:6], RAW12 may use bits [15:4], RAW14 may use bits
[15:2], and so forth.

In practice, the scale and offset logic 82 may permit image
processing with headroom and footroom. As used herein,
“headroom” refers to
ISP Overflow Handling

In accordance with an embodiment, the image processing
circuitry 32 may provide overflow handling. For instance, an
overflow condition (also referred to as “overrun”) may occur
in certain situations where the ISP pipe processing logic 80
receives back-pressure from its own internal processing units,
from downstream processing units (e.g., ISP back-end inter-
face 86), or from a memory 100 destination (e.g., where the
image data is to be written). Overflow conditions may occur
when pixel data is being read in (e.g., either from the sensor
interface or memory) faster than one or more processing
blocks is able to process the data, or faster than the data may
be written to a destination (e.g., memory 100).

As will be discussed further below, reading and writing to
memory may contribute to overflow conditions. When the
input data derives from a location in the memory 100, the
image processing circuitry 32 may simply stall the reading of
the input data when an overflow condition occurs until the
overflow condition recovers. When image data is being read
directly from an image sensor, however, the “live” data gen-
erally cannot be stalled, as the image sensor 90 is generally
acquiring the image data in real time. For instance, the image
sensor 90 may operate in accordance with a timing signal
based upon its own internal clock and may output image
frames at a certain frame rate, such as 15, 30, or 60 frames per
second (fps). The sensor 90 inputs to the image processing
circuitry 32 and memory 100 may thus include input queues
which may buffer the incoming image data before it is pro-
cessed (by the image processing circuitry 32) or written to
memory (e.g., 100). Accordingly, if image data is being
received at the input queue 130 faster than it can be read out
of the queue 130 and processed or stored (e.g., written to
memory 100), an overflow condition may occur. That is, if the
buffers/queues are full, additional incoming pixels cannot be

US 9,105,078 B2

43

buffered and, depending on the overflow handling technique
implemented, may be dropped.

FIG. 44 shows a block diagram of the image processing
circuitry 32, focusing on features of the control logic 84 that
may provide for overflow handling in accordance with an
embodiment. As illustrated, image data associated with Sen-
sor0 90a and Sensor 1 905 may be read in from memory 100
as sources SOand S1 (by way of sensor input queues 130a and
13054) to the ISP pipe processing logic 80 (e.g., RAWProc
150), or may be provided to the ISP pipe processing logic 80
directly from the respective sensor interfaces. In the latter
case, incoming pixel data from the image sensors 90a and 905
may be passed to input queues 400 and 402, respectively,
before being sent to the ISP pipe processing logic 80.

When an overflow condition occurs, the processing
block(s) (e.g., blocks 80, 82, or 120) or memory (e.g., 108) in
which the overflow occurred may provide a signal (as indi-
cated by signals 405, 407, and 408) to set a bit in an interrupt
request (IRQ) register 404. In the present embodiment, the
IRQ register 404 may be implemented as part of the control
logic 84. Additionally, separate IRQ registers 404 may be
implemented for each of SensorQ image data and Sensorl
image data. Based on the value stored in the IRQ register 404,
the control logic 84 may be able to determine which logic
units within the ISP processing blocks 80, 82, 120 or memory
100 generated the overflow condition. The logic units may be
referred to as “destination units,” as they may constitute des-
tinations to which pixel data is sent. In some embodiments,
the destination units may represent the destinations D0-D7.
Based on the overflow conditions, the control logic 84 may
also (e.g., through firmware/software handling) govern which
frames are dropped (e.g., either not written to memory or not
output to the display for viewing).

Once an overflow condition is detected, the manner in
which overflow handling is carried may depend on whether
the ISP pipe processing logic 80 is reading pixel data from
memory 100 or from the image sensor input queues (e.g.,
buffers) 130a or 1305, which may be first-in-first-out (FIFO)
queues. When input pixel data is read from memory 100
through, for example, an associated DMA interface, the ISP
pipe processing logic 80 will stall the reading of the pixel data
if it receives back-pressure as a result of an overflow condi-
tion being detected (e.g., via control logic 84 using the IRQ
register(s) 404) from any downstream destination blocks
which may include the ISP pipe processing logic 80, the ISP
back-end interface 86, or the memory 100 in instances where
the output of the ISP pipe processing logic 80 is written to
memory 100. In this scenario, the control logic 84 may pre-
vent overflow by stopping the reading of the pixel data from
memory 100 until the overflow condition recovers. For
instance, overflow recovery may be signaled when the down-
stream unit that is causing the overflow condition sets a cor-
responding bit in the IRQ register 404 indicating that the
overflow is no longer occurring. An example of this process
appears in a flowchart 410 of FIG. 45.

While overflow conditions may generally be monitored at
the sensor input queues, it should be understood that many
additional queues may be present between processing units of
the image processing circuitry 32 (e.g., including internal
units of the ISP pipe processing logic 80 and/or the ISP
back-end logic 86). Additionally, the various internal units of
the image processing circuitry 32 may also include line buff-
ers, which may also function as queues. Thus, all the queues
and line buffers of the image processing circuitry 32 may
provide buffering. Accordingly, when the last processing
block in a particular chain of processing blocks is full (e.g., its
line buffers and any intermediate queues are full), back-pres-

10

15

20

25

30

35

40

45

50

55

60

65

44

sure may be applied to the preceding (e.g., upstream) pro-
cessing block and so forth, such that the back-pressure propa-
gates up through the chain of logic until it reaches the sensor
interface, where overflow conditions may be monitored.
Thus, when an overflow occurs at the sensor interface, it may
mean that all the downstream queues and line buffers are full.

As shown in FIG. 45, the flowchart 410 may begin at block
412, when pixel data for a current from is read from memory
to the ISP pipe processing logic 80. Decision logic 414 may
determine whether an overflow condition is present. This
decision may involve determining the state of bits in the IRQ
register(s) 404. If no overflow condition is detected, then the
flowchart 410 returns to block 412 and continues to read in
pixels from the current frame. If an overflow condition is
detected by decision logic 414, pixels of the current frame
may no longer be read from memory, as shown by block 416.
Next, at decision logic 418, it is determined whether the
overflow condition has recovered. If the overtlow condition
persists, the process may wait at the decision logic 418 until
the overflow condition recovers. If decision logic 418 indi-
cates that the overflow condition has recovered, the process
proceeds to block 420 and pixel data for the current frame
may resume being read from memory.

When an overflow condition occurs while input pixel data
is being read in from the sensor interface(s) 90a or 905,
interrupts may indicate which downstream units (e.g., pro-
cessing blocks or destination memory) generated the over-
flow. In one embodiment, overflow handling may be provided
based on two scenarios. In a first scenario, the overflow con-
dition occurs during an image frame, but recovers before the
start of the subsequent image frame. In this case, input pixels
from the image sensor are dropped until the overflow condi-
tion recovers and space becomes available in the input queue
corresponding to the image sensor. The control logic 84 may
use a counter 406 to track the number of dropped pixels
and/or dropped frames. When the overflow condition recov-
ers, the dropped pixels may be replaced with undefined pixel
values (e.g., all 1’s, all 0’s, or a value programmed into a data
register that sets what the undefined pixel values are), and
downstream processing may resume. In a further embodi-
ment, the dropped pixels may be replaced with a previous
non-overflow pixel (e.g., the last “good” pixel read into the
input buffer). Doing so may ensure that a correct number of
pixels (e.g., a number of pixels corresponding to the number
of'pixels expected in a complete frame) is sent to the ISP pipe
processing logic 80, thus enabling the ISP pipe processing
logic 80 to output the correct number of pixels for the frame
that was being read in from the sensor input queue when the
overflow occurred.

While the correct number of pixels may be output by the
ISP pipe processing logic 80 under this first scenario, depend-
ing on the number of pixels that were dropped and replaced
during the overflow condition, software handling (e.g., firm-
ware), which may be implemented as part of the control logic
84, may choose to drop (e.g., exclude) the frame from being
sent to the display 28 and/or written to the memory 100. Such
a determination may be based, for example, upon the value of
the dropped pixel counter 406 compared to an acceptable
dropped pixel threshold value. For instance, if an overtlow
condition occurs only briefly during the frame such that only
a relatively small amount of pixels are dropped (e.g., and
replaced with undefined or dummy values; e.g., 10-20 pixels
or less), then the control logic 84 may choose to display
and/or store this image despite the small number of dropped
pixels, even though the presence of the replacement pixels
may produce minor artifacts in the resulting image. However,
owing to the small number of replacement pixels, such arti-

US 9,105,078 B2

45

facts may go generally unnoticed or may be only marginally
perceptibleto a user. That s, the presence of any such artifacts
due to the undefined pixels from the brief overflow condition
may not significantly degrade the aesthetic quality of the
image (e.g., any such degradation may be minimal or negli-
gible to the human eye).

In a second scenario, the overflow condition may remain
present into the start of the subsequent image frame. In this
case, the pixels of the current frame are also dropped and
counted like the first scenario described above. However, if an
overflow condition is still present upon detecting a VSYNC
rising edge (e.g., indicating the start of a subsequent frame),
the ISP pipe processing logic 80 may hold off the next frame,
thus dropping the entire next frame. In this scenario, the next
frame and subsequent frames will continue to be dropped
until overflow recovers. Once the overflow recovers, the pre-
viously current frame (e.g., the frame being read when the
overflow was first detected) may replace its dropped pixels
with the undefined pixel values, thus allowing the ISP pipe
processing logic 80 to output the correct number of pixels for
that frame. Thereafter, downstream processing may resume.
As for the dropped frames, the control logic 84 may further
include a counter that counts the number of dropped frames.
This data may be used to adjust timings for audio-video
synchronization. For instance, for video captured at 30 fps,
each frame has a duration of approximately 33 milliseconds.
Thus, if three frames are dropped due to overflow, then the
control logic 84 may be configured to adjust audio-video
synchronization parameters to account for the approximately
99 millisecond (33 millisecondsx3 frames) duration attribut-
able to the dropped frames. For instance, to compensate for
time attributable due to the dropped frames, the control logic
84 may control image output by repeating one or more pre-
vious frames.

An example of a flowchart 430 representing the above-
discussed scenarios that may occur when input pixel data is
being read from the sensor interfaces appears in FIG. 46. As
shown, the flowchart 430 begins at block 432, at which pixel
data for a current frame is read in from the sensor to the ISP
pipe processing logic 80. Decision logic 434 then determines
whether an overflow condition exists. If there is no overflow,
the flowchart 430 continues, as pixels of the current frame are
read (e.g., returning to block 432). If decision logic 434
determines that an overflow condition is present, then the
flowchart 430 continues to block 436, where the next incom-
ing pixel of the current frame is dropped. Next, decision logic
438 determines whether the current frame has ended and the
next frame has begun. For instance, in one embodiment, this
may include detecting a rising edge in the VSYNC signal. If
the sensor is still sending the current frame, the flowchart 430
continues to decision logic 440, which determines whether
the overflow condition originally detected at logic 434 is still
present. If the overflow condition has not recovered, then the
flowchart 430 proceeds to block 442, at which the dropped
pixel counter is incremented (e.g., to account for the incom-
ing pixel dropped at block 436). The method then returns to
block 436 and continues.

If, atdecision logic 438, it is detected that the current frame
has ended and that the sensor 90 is sending the next frame
(e.g., VSYNC rising detected), then the flowchart 430 pro-
ceeds to block 450. At block 450, all pixels of the next and
subsequent frames are dropped as long as the overflow con-
dition remains (e.g., shown by decision logic 452). As dis-
cussed above, a separate counter 406 may track the number of
dropped frames, which may be used to adjust audio-video
synchronization parameters. If decision logic 452 indicates
that the overflow condition has recovered, then the dropped

10

15

20

25

30

35

40

45

50

55

60

65

46

pixels from the initial frame in which the overflow condition
first occurred are replaced with a number of undefined pixel
values corresponding to the number of dropped pixels from
that initial frame, as indicated by the dropped pixel counter.
As mentioned above, the undefined pixel values may be all
1’s, all 0’s, a replacement value programmed into a data
register, or may take the value of a previous pixel that was
read before the overflow condition (e.g., the last pixel read
before the overflow condition was detected). Accordingly,
this allows the initial frame to be processed with the correct
number of pixels and, at block 446, downstream image pro-
cessing may continue, which may include writing the initial
frame to memory. As also discussed above, depending on the
number of pixels that were dropped in the frame, the control
logic 84 may either choose to exclude or include the frame
when outputting video data (e.g., if the number of dropped
pixels is above or below an acceptable dropped pixel thresh-
old). As may be appreciated, overflow handling may be per-
formed separately for each input queue 400 and 402 of the
image processing circuitry 32.

Another example of overflow handling that may be imple-
mented in accordance with the present disclosure is shown in
FIG. 47 by way of a flowchart 460. Here, overtlow handling
for an overflow condition that occurs during a current frame
but recovers before the end of a current frame is handled in the
same manner as shown in FIG. 46 and, therefore, those steps
have thus been numbered with like reference numbers 432-
446. The difference between the flowchart 460 of F1IG. 47 and
the flowchart 430 of FIG. 46 pertains to overflow handling
when an overflow condition continues into the next frame.
For instance, referring to decision logic 438, when the over-
flow condition continues into the next frame, rather than drop
the next frame as in the flowchart 430 of FIG. 46, the flow-
chart 460 implements block 462, in which the dropped pixel
counter is cleared, the sensor input queue is cleared, and the
control logic 84 is signaled to drop the partial current frame.
By clearing the sensor input queue and dropped pixel counter,
the flowchart 460 prepares to acquire the next frame (which
now becomes the current frame), returning the method to
block 432. As may be appreciated, pixels for this current
frame may be read into the sensor input queue. If the overflow
condition recovers before the input queue becomes full, then
downstream processing resumes. However, if the overflow
condition persists, the flowchart 460 will continue from block
436 (e.g., begin dropping pixels until overflow either recovers
or the next frame starts).

Statistics Logic

As mentioned above, the statistics logic 140a and 1406
may collect various statistics about the image data. These
statistics may include information relevant to the sensors 90a
and 905 that capture and provide the raw image signals (e.g.,
Sif0 94a and Sifl 94b), such as statistics relating to auto-
exposure, auto-white balance, auto-focus, flicker detection,
black level compensation, and lens shading correction, and so
forth. The statistics logic 140a and 1405 may also collect
statistics used to control aspects of the ISP pipe processing
logic 80, such as local tone mapping and local histogram
statistics, local thumbnail statistics, fixed pattern noise statis-
tics, and so forth.

An example of some of the components of the statistics
logic 140a appears in FIG. 48. It may be recalled that the
statistics logic 140a and 1405 are substantially identical. As
such, only statistics logic 140a is shown in FIG. 48, but it
should be appreciated that the statistics logic 1405 may con-
tain similar components. The statistics logic 140a may

US 9,105,078 B2

47

receive raw image data deriving from the first sensor interface
944 (S0), the second sensor interface 9456 (S1), or the memory
100 (S2 and S3). The image data may be converted to signed
17-bit format by the scale and offset logic 82, which is dis-
cussed above with reference to FIGS. 40-43. Since the scale
and offset logic 82 may be implemented as functions of the
DMA input, this element is not otherwise shown in FIG. 48.
Selection logic 142a may select which of the input signals to
process.

The statistics image processing logic 144a may process
some of the input image data before collecting statistics in the
statistics core 146a. As shown in FIG. 48, however, certain
other image data may not be processed through the statistics
image processing logic 144a. Image data that is processed
through the statistics image processing logic 144a may be
decimated, in some embodiments, to facilitate processing. By
way of example, before substantial processing by the statis-
tics image processing logic 144a, the image data may be
decimated by a factor of four (e.g., 4x4 averaged). If deci-
mating before substantial processing in the statistics image
processing logic 144a (e.g., before sensor linearization
(SLIN) logic 470), this may be noted by clipped pixel track-
ing, as will be described below.

As illustrated, the statistics image processing logic 144a
may include sensor linearization (SLIN) logic 470, black
level compensation (BLC) logic 472, defective pixel replace-
ment (DPR) logic 474, lens shading correction (LSC) logic
476, and/or inverse black level compensation (IBLC) logic
478. These processes will be discussed in greater detail
below. The statistics core 146a may use image data output by
the inverse black level compensation (IBLC) (block 478).
While image data is being processed in the statistics image
processing logic 144a or while statistics are being collected in
the statistics core 1464, clipped pixel tracking logic 480 may
track pixels that are gained beyond the maximum pixel value.

The statistics core 146a may collect statistics using 8-bit or
16-bit data. Collecting statistics using 16-bit data may pro-
vide more precise statistics and may be advantageous for
many applications (e.g., handling image data from high
dynamic range (HDR) image sensors 90). Many legacy algo-
rithms may use 8-bit statistics, however, so the statistics core
146a may collect 8-bit or 16-bit statistics based on a selection
by the software controlling the ISP pipe processing logic 80.
The statistics core 146a may include “3A” statistics collec-
tion logic 482 to collect statistics relating to auto-exposure,
auto-white balance, auto-focus, and similar operations; fixed
pattern noise (FPN) statistics collection logic 484; histogram
statistics collection logic 486; and/or local statistics collec-
tion logic 488.

The statistics core 146a may receive the output of the IBLC
logic 478 and convert the input pixels to 16-bit or 8-bit,
scaling the input pixels appropriately. In addition, the FPN
statistics collection logic 484 may receive interim image data
output by the defective pixel replacement (DPR) block 474.
The histogram statistics collection logic 486 may receive
image data that is not processed through the statistics image
processing logic 144a. Statistics from the statistic core 146a
may be output to the memory 100 or to other processing
blocks of the ISP pipe processing logic 80. How the compo-
nents of the statistics core 146a collect statistics will be dis-
cussed in greater detail further below, following a discussion
of the components of the statistics image processing logic
144a.

As discussed above, the statistics logic 140a and/or 1406
may track clipped pixels using clipped pixel tracking logic
480. Although the clipped pixel tracking logic 480 is illus-
trated as a discrete functional block in FIG. 48, and may track

10

15

20

25

30

35

40

45

50

55

60

65

48

pixels in a centralized way (e.g., an array of flags correspond-
ing to every pixel being processed through the in some
embodiments, clipped pixel tracking may be carried out dif-
fusely throughout the statistics logic 140a and/or 1405. For
example, pixels passing through the statistics logic 144a and/
or 1445 may be defined not only by pixel data, but also by a
clipped pixel flag that moves with the pixel throughout the
statistics logic 140a and/or 1405.

FIG. 223 provides one example of pixel data that may be
used in the statistics processing logic 140a and/or 1405. Inthe
example of FIG. 223, a pixel 5300 being processed through
the statistics image processing logic 144a or 1445 may
include signed 17-bit pixel data 5302 and a clipped pixel flag
5304. In other embodiments, the pixel 5300 may include pixel
data 5302 of any other suitable bit depth, which may be signed
orunsigned. The clipped pixel flag 5304 may represent one or
more bits that, when set, indicate that the pixel data 5302 has
been clipped—that is, that the pixel data 5302 has been pro-
cessed in such a way that the pixel data 5302 that some image
information has been lost. When the pixel data 5302 has been
clipped, the pixel data 5302 may not be reliable for collecting
certain statistics.

The clipped pixel flag 5304 may indicate that and/or where
the pixel data 5302 was clipped. In one example, the clipped
pixel flag 5304 may be a single bit that may indicate only that
the pixel 5300 has been clipped somewhere in the statistics
image processing logic 144a and/or 144b. In other embodi-
ments, however, the clipped pixel flag 5304 may take up more
than one bit. For such embodiments, the clipped pixel flag
5304 may indicate not only that the pixel data 5302 has been
clipped, but also the particular operation where it was clipped.

To provide a brief example of the operation of a multi-bit
clipped pixel flag 5304, when the black level compensation
(BLC) logic 472 causes the pixel 5300 to clip, the clipped
pixel flag may be set to a numerical value to indicate that the
BLC logic 472 caused the pixel 5300 to clip. For example, the
clipped pixel flag 5304 may be a 3-bit value that is set to 0
when the pixel data 5302 is not clipped, to 1 when the sensor
linearization (SLIN) logic 470 causes the pixel data 5302 to
clip, to 2 when the BLC logic 472 causes the pixel data 5302
to clip, to 3 when the lens shading correction (LSC) logic 476
causes the pixel data 5302 to clip, and 4 when the IBLC logic
478 causes the pixel data 5302 to clip. Subsequently, particu-
lar logical blocks of the statistics cores 146a and/or 1465 may
determine to collect statistics using the pixel 5300 depending
on whether clipping in the BL.C logic 472, or the L.SC logic
476 still results in image data usable by particular logic of the
statistics core 146a and/or 1465. As should be appreciated,
the above discussion presents only one example of such a
multi-bit clipped pixel flag 5304. Other embodiments may
include more or fewer bits and may also indicate, for
example, when a pixel is clipped by more than one block, or
may be concerned only with clipping caused by certain
blocks.

In still other examples, the clipped pixel flag 5304 may
indicate the extent of pixel data 5302 clipping. For instance,
the clipped pixel flag 5304 may be set to a first value when an
operation of the statistics image processing logic 1444 and/or
1445 would have been—had the pixel data 5302 had not been
clipped—over the maximum value that can be stored in the
pixel data 5302, but beneath a first threshold. The clipped
pixel flag 5304 may be set to a second value when an opera-
tion of'the statistics image processing logic 144a and/or 1445
would have been—had the pixel data 5302 had not been
clipped—at or above the first threshold.

In any case, the various functional blocks of the statistics
cores 1464 and/or 1465 may use the clipped pixel flag 5304 or

US 9,105,078 B2

49

any other indications that a specific pixel has been clipped
(e.g., discrete counters in the clipped pixel tracking logic 480)
in collecting image statistics. For example, software control-
ling the ISP pipe processing logic 80 may program the various
functional blocks of the statistics cores 146a and/or 1465 to
use or not to use certain pixels in calculating statistics based
on whether the pixel has been clipped, where the pixel has
been clipped, and/or the extent to which the pixel has been
clipped. In this way, statistics collection using clipped pixels
may vary depending on the reason for processing the pixels in
the ISP pipe processing logic 80. The various functional
blocks of the statistics image processing logic 144a may also
vary operation based on whether a pixel is indicated as
clipped. For instance, a pixel in a filter may not be considered
if it has been clipped, which may prevent the clipped pixel
from skewing the output with erroneous information.

Any of the statistics collection logic discussed below may
include or exclude pixels from statistics collection depending
on whether the pixel is indicated as clipped and/or where or to
what extent the pixel is indicated as clipped (e.g., as indicated
by aclipped pixel flag 5304 or by clipped pixel tracking logic
480). Namely, white balancing may incorrectly identity the
color temperature of a scene if clipped pixels are used, so
white balancing components of the 3A statistics collection
logic 482 may discard clipped pixel values. Similarly, auto-
focus components of the 3A statistics collection logic 482
may discard clipped pixel values because using blown-out
regions of the image data may generate incorrect focal results.

Whether a particular component of the statistics core 146a
(including sub components, such as the various elements of
the 3 A statistics collection logic 482) uses a clipped pixel may
be hard-coded or controlled by software. That is, in some
embodiments, all components of the statistics core 146a may
exclude clipped pixels from statistics. In other embodiments,
software may control (e.g., toggle) whether particular com-
ponents of the statistics core 146a use clipped pixels. Addi-
tionally or alternatively, a single global toggle selection may
enable software to determine whether all of the components
of the statistics core 146a consider clipped pixels in deter-
mining statistics.

Statistics Image Processing Logic

The discussion will now turn to the statistics image pro-
cessing logic 144. It should be appreciated that many of the
image processing operations discussed in relation to the sta-
tistics logic 140 may be employed in the same or a similar
manner by the other image processing functional blocks of
the ISP pipe processing logic 80, namely those of the raw
processing logic (RAWProc) 150.

Sensor Linearization (SLIN) Logic

Raw image data received from some sensors 90, particu-
larly high dynamic range (HDR) sensors, may be nonlinear.
For instance, raw image data in a companding format first
may need to be mapped from nonlinear space to a linear
space. The sensor linearization logic 470 of the statistics
image processing logic 144a may perform such a conversion.
One example of the sensor linearization (SLIN) logic 470
appears in FIG. 49.

As seen in FIG. 49, the sensor linearization (SLIN) logic
470 may receive input pixels in raw format (e.g., signed 17-bit
raw format) one pixel at a time. An input offset value (block
490) may be applied to each input pixel. If the pixel value
exceeds the signed 17-bit range after the input offset is
applied, the pixel value may be clamped and an input clip
counter may be incremented. A pixel lookup block 492 may
obtain a new pixel value by using the output of the input offset

10

15

20

25

30

35

40

45

50

55

60

65

50

logic 490 as an index value to a lookup table (LUT) 494. The
LUT 494 may map nonlinear input pixel values to linear
output pixel values. In the example of FIG. 49, the LUT 494
of the sensor linearization (SLIN) logic 470 includes two
banks of lookup tables 4964 and 4965, each including respec-
tive lookup tables for each raw color pixel. As may be recalled
from the discussion relating to FIG. 2, above, Bayer pixels of
the raw image data format may be one of four colors: green-
red (Gr), red (R), blue (B), and green-blue (Gb). As such, each
bank of lookup tables 4964 or 4965 may include a respective
lookup table (LUT) for each raw input pixel color component.
These are represented as Gr LUT 498, R LUT 500, B LUT
502, and Gb LUT 504. After looking up the new pixel value
via the pixel lookup block 492, the sensor linearization
(SLIN) logic 470 may optionally apply an output offset 506 to
produce an output pixel, now linearized, illustrated at
numeral 508. If the pixel value after the output offset exceeds
the signed 17-bit range, the pixel value may be clamped to the
signed 17-bit range and an output clip counter may be incre-
mented.

As seen in a more detailed schematic block diagram of the
lookup table bank 496a shown in FIG. 50, each lookup table
498a,500a, 5024, and 504a may include any suitable number
of entries. The entries of the lookup tables 498, 500, 502, and
504 are noted as numerals 512, 514, 516, and 518, respec-
tively. The entries 512, 514, 516, and 518 may be of any
suitable number (e.g., 33, 65, 129, or, in the illustrated
example, 257, or more) and may have any suitable bit depth
(e.g., 8,10, 12, 14, or, in the illustrated example, 16 bits, or
more). The value of the entries 512, 514, 516, and 518 may
represent pre-offset output pixel levels that map non-linear
sensor values to linear image pixel values. In the example of
FIG. 50, the 257 input entries of each lookup table 498, 500,
502, and 504 may be evenly distributed in the range of 8- to
16-bit input pixel values.

Only the lookup table bank 4964 is shown in FIG. 50, but
it should be appreciated that the lookup table bank 4965 may
operate in a substantially similar way. Because the lookup
tables 498, 500, 502, and 504 are double-banked in the lookup
table banks 4964 and 4965, firmware may update one of the
banks 4964 or 4965 while the sensor linearization (SLIN)
logic 470 is processing the image data using the other bank
(e.g., bank 496a). The lookup tables 498, 500, 502, and 504
may be loaded individually, or all four inactive tables can be
loaded with the same values.

An example operation of the sensor linearization (SLIN)
logic 470 appears in a flowchart 520 of FIG. 51. The flowchart
520 may begin when the sensor linearization (SLIN) logic
470 receives an input pixel in raw format (block 522). The
sensor linearization (SLIN) logic 470 may apply an input
offset value (block 524). The input offset value that is applied
may be a signed value applied before the sensor linearization
(SLIN) logic 470 looks up the new value of the pixel in the
lookup tables 494. For negative pixel values, the pixel value
selected from the lookup table 498, 500, 502, or 504 may be
the absolute value of the input pixel. The sign of the image
data may be applied after the resulting lookup table output
value has been obtained. It may be appreciated that this is
equivalent to miring the lookup tables 498, 500, 502, and 504
around zero.

As mentioned above, the 257 input entries 512,514, 516, or
518 may be evenly distributed in the range of 8- to 16-bitinput
pixel values. Thus, when the input pixel value falls between
the intervals of the 257 entries (e.g., between entries 54 and
55), the output values may be linearly interpolated using the
two values between which the input pixel value falls. As
should be appreciated, the input bit depth may determine the

US 9,105,078 B2

51

amount of interpolated bits. For 8-bit input, no interpolation
need be performed. For 10-16 bit input pixels, however, the
lower 2-8-bits will be used for interpolation. The firmware
may thus select the fraction for interpolation based on the bit
depth of the input pixels to obtain a output linear pixel output
value.

Having retrieved a linearized pixel value from the lookup
tables 494, the sensor linearization (SLIN) logic 470 may
apply an output offset value (block 528). The output offset
value may be signed (i.e., may add or subtract from the value
obtained from the lookup tables 494). The sensor lineariza-
tion (SLIN) logic 470 then may output the resulting linear
pixels 508 to be processed by the black level compensation
(BLC) block 472.

Black Level Compensation (BLC)

Returning to FIG. 48, the output of the sensor linearization
(SLIN) logic 470 may be passed to the black level compen-
sation (BLC) logic 472. The BLC logic 472 may provide for
digital gain, offset, and clipping independently for each color
component “c” (e.g., R, B, Gr, and Gb for Bayer) on the pixels
used for statistics collection. For instance, as expressed by the
following operation, the input value for the current pixel is
first offset by a signed value, and then multiplied by a gain.

Y=(X+O[c])xG/[c]),

where X represents the input pixel value for a given color
component ¢ (e.g., R, B, Gr, or Gb), O[c] represents a signed
16-bit offset for the current color component ¢, G|c]| repre-
sents a gain value for the color component ¢, andY represents
the output pixel value. In one embodiment, the gain G[c] may
be a 16-bit unsigned number with 2 integer bits and 14 frac-
tion bits (e.g., 2.14 in floating point representation), and the
gain G[c] may be applied with rounding. By way of example,
the gain G[c] may have a range of between O to 4 (e.g., 4 times
the input pixel value).

Next, as shown by Equation 2 below, the computed value Y,
which is signed, may then be then clipped to a minimum and
maximum range:

Y=(¥<min[c])?min[c]:(¥>max[c])?max[c]:Y) (2).

The variables min[c] and max[c] may represent signed
16-bit clipping values for the minimum and maximum output
values, respectively. In one embodiment, the BL.C logic 472
may also be configured to maintain a count of the number of
pixels that were clipped above and below maximum and
minimum, respectively, per color component. Additionally or
alternatively, the clipped pixel tracking logic 480 may glo-
bally track pixels clipped throughout the statistics logic 140a.
In some embodiments, when the pixel is clipped, a clipped
pixel flag associated with the clipped pixel may be set to
indicate that the pixel was clipped, that the pixel was clipped
by the BLC logic 472, and/or the extent to which the pixel was
clipped.

Defective Pixel Replacement

As may be appreciated, the image sensor(s) 90 may not
always perfectly capture every pixel of light. Some of the
pixels of the sensor(s) 90 may be “defective pixels,” a term
that refers to imaging pixels within the image sensor(s) 90
that fail to sense light levels accurately. Defective pixels may
attributable to a number of factors, and may include “hot” (or
leaky) pixels, “stuck” pixels, and “dead pixels.” A “hot” pixel
generally appears as being brighter than a non-defective pixel
given the same amount of light at the same spatial location.
Hot pixels may result due to reset failures and/or high leak-
age. For example, a hot pixel may exhibit a higher than
normal charge leakage relative to non-defective pixels, and
thus may appear brighter than non-defective pixels. Addition-

15

25

30

35

40

45

52

ally, “dead” and “stuck” pixels may be the result of impuri-
ties, such as dust or other trace materials, contaminating the
image sensor during the fabrication and/or assembly process,
which may cause certain defective pixels to be darker or
brighter than a non-defective pixel, or may cause a defective
pixel to be fixed at a particular value regardless of the amount
oflight to which it is actually exposed. Additionally, dead and
stuck pixels may also result from circuit failures that occur
during operation of the image sensor. By way of example, a
stuck pixel may appear as always being on (e.g., fully
charged) and thus appears brighter, whereas a dead pixel
appears as always being off.

The defective pixel replacement (DPR) logic 474 may
correct defective pixels by replacing them with other values
before the pixels are considered in statistics collection in the
statistics core 146a. With reference again to F1G. 48, it may be
seen that the DPR logic 474 appears after the BLC logic 472.
By performing defective pixel replacement after, rather than
before, black level compensation, the black levels may be
more accurately represented (since replacing some of the
defective pixels may disadvantageously change the black
level of the image data). In other embodiments, however, the
DPR logic 474 may occur before the BL.C logic 472.

In one embodiment, defective pixel correction is per-
formed independently for each color component (e.g., R, B,
Gr, and Gb for a Bayer pattern). Generally, the DPR logic 474
may provide for dynamic defect correction, wherein the loca-
tions of defective pixels are determined automatically based
upon directional gradients computed using neighboring pix-
els of the same color. As will be understand, the defects may
be “dynamic” in the sense that the characterization of a pixel
as being defective at a given time may depend on the image
data in the neighboring pixels. By way of example, a stuck
pixel that is always on maximum brightness may not be
regarded as a defective pixel if the location of the stuck pixel
is in an area of the current image that is dominate by brighter
or white colors. Conversely, if the stuck pixel is in a region of
the current image that is dominated by black or darker colors,
then the stuck pixel may be identified as a defective pixel
during processing by the DPR logic 474 and corrected
accordingly.

The DPR logic 474 may use one or more horizontal neigh-
boring pixels of the same color on each side of a current pixel
to determine if the current pixel is defective using pixel-to-
pixel directional gradients. If a current pixel is identified as
being defective, the value of the defective pixel may be
replaced with the value of a horizontal neighboring pixel. For
instance, in one embodiment, five horizontal neighboring
pixels of the same color that are inside the raw frame 310
(FIG. 21) boundary are used, wherein the five horizontal
neighboring pixels include the current pixel and two neigh-
boring pixels on either side. Thus, as illustrated in FIG. 52, for
a given color component ¢ and for the current pixel P, hori-
zontal neighbor pixels PO, P1, P2, and P3 may be considered
by the DPR logic 474. It should be noted, however, that
depending on the location of the current pixel P, pixels outside
the raw frame 310 are not considered when calculating pixel-
to-pixel gradients.

For instance, as shown in FIG. 52, in a “left edge” case 540,
the current pixel P is at the leftmost edge of the raw frame 310
and, thus, the neighboring pixels PO and P1 outside of the raw
frame 310 are not considered, leaving only the pixels P, P2,
and P3 (N=3). In a “left edge+1” case 542, the current pixel P
is one unit pixel away from the leftmost edge of the raw frame
310 and, thus, the pixel PO is not considered. This leaves only
the pixels P1, P, P2, and P3 (N=4). Further, in a “centered”
case 544, pixels PO and P1 on the left side of the current pixel

US 9,105,078 B2

53

P and pixels P2 and P3 on the right side of the current pixel P
are within the raw frame 310 boundary and, therefore, all of
the neighboring pixels PO, P1, P2, and P3 (N=5) are consid-
ered in calculating pixel-to-pixel gradients. Additionally,
similar cases 546 and 548 may be encountered as the right-
most edge of the raw frame 310 is approached. For instance,
given the “right edge —1” case 546, the current pixel P is one
unit pixel away the rightmost edge of the raw frame 310 and,
thus, the pixel P3 is not considered (N=4). Similarly, in the
“right edge” case 548, the current pixel P is at the rightmost
edge of the raw frame 310 and, thus, both of the neighboring
pixels P2 and P3 are not considered (N=3).

In the illustrated embodiment, for each neighboring pixel
(k=0 to 3) within the picture boundary (e.g., raw frame 310),
the pixel-to-pixel gradients may be calculated as follows:

G,=abs(P-P,), for 0=ks=3 (only for k within the raw

frame) (3).
Once the pixel-to-pixel gradients have been determined,
defective pixel detection may be performed by the DPR logic
474 as follows. First, it is assumed that a pixel is defective if
acertain number of its gradients G, are at or below a particular
threshold, denoted by the variable dprTh. Thus, for each
pixel, a count (C) of the number of gradients for neighboring
pixels inside the picture boundaries that are at or below the
threshold dprTh is accumulated. By way of example, for each
neighbor pixel inside the raw frame 310, the accumulated
count C of the gradients Gy, that are at or below the threshold
dprTh may be computed as follows:

N 4)
C= Z (G < dprTh),
k

for

0 <k <3 (only for k within the raw frame).

As may be appreciated, depending on the color components,
the threshold value dprTh may vary. Next, if the accumulated
count C is determined to be less than or equal to a maximum
count, denoted by the variable dprMaxC, then the pixel may
be considered defective. This logic is expressed below:

if (C=dprMax(), then the pixel is defective (5).

Defective pixels are replaced using a number of replace-
ment conventions. For instance, in one embodiment, a defec-
tive pixel may be replaced with the pixel to its immediate left,
P1. At a boundary condition (e.g., P1 is outside of the raw
frame 310), a defective pixel may replaced with the pixel to its
immediate right, P2. Further, it should be understood that
replacement values may be retained or propagated for suc-
cessive defective pixel detection operations. For instance,
referring to the set of horizontal pixels shown in FIG. 52, it PO
or P1 were previously identified by the DPR logic 474 as
being defective pixels, their corresponding replacement val-
ues may be used for the defective pixel detection and replace-
ment of the current pixel P.

To summarize the above-discussed defective pixel detec-
tion and correction techniques, a flowchart depicting such a
process is provided in FIG. 53 and referred to by reference
number 560. As shown, process 560 begins at step 562, at
which a current pixel (P) is received and a set of neighbor
pixels is identified. In accordance with the embodiment
described above, the neighbor pixels may include two hori-
zontal pixels of the same color component from opposite
sides of the current pixel (e.g., PO, P1, P2, and P3). Next, at

25

30

35

40

45

50

55

54

step 564, horizontal pixel-to-pixel gradients are calculated
with respect to each neighboring pixel within the raw frame
310, as described in Equation 3 above. Thereafter, at step 566,
acount C ofthe number of gradients that are less than or equal
to a particular threshold dprTh is determined. As shown at
decision logic 568, if C is less than or equal to dprMaxC, then
the process 560 continues to step 570, and the current pixel is
identified as being defective. The defective pixel is then cor-
rected at step 572 using a replacement value. Additionally,
referring back to decision logic 568, if C is greater than
dprMaxC, then the process continues to step 574, and the
current pixel is identified as not being defective, and its value
is not changed.

It should be noted that the defective pixel detection/correc-
tion techniques applied during the ISP pipe processing logic
80 statistics processing may be less robust than defective
pixel detection/correction that is performed in the ISP pipe
logic 82. For instance, as will be discussed in further detail
below, defective pixel detection/correction performed in the
ISP pipe logic 82 may, in addition to dynamic defect correc-
tion, further provide for fixed defect correction, wherein the
locations of defective pixels are known a priori and loaded in
one or more defect tables. Further, dynamic defect correction
may inthe ISP pipelogic 82 may also consider pixel gradients
in both horizontal and vertical directions, and may also pro-
vide for the detection/correction of speckling, as will be dis-
cussed below.

Lens Shading Correction (LSC)

The geometric optics of the lens may result in a drop-off in
intensity that is roughly proportional to the distance from the
lens optical center. Lens shading correction logic 476 may be
used to correct these anomalies by applying a gain per pixel to
compensate for these drop-offs in intensity.

Referring to FIG. 54, a three-dimensional profile 580
depicting light intensity versus pixel position for a typical
lens is illustrated. As shown, the light intensity near the center
582 of the lens gradually drops off towards the corners or
edges 584 of the lens. The lens shading irregularities depicted
in FIG. 54 may be better illustrated by FIG. 55, which shows
a photograph 586 that exhibits drop-offs in light intensity
towards the corners and edges. Particularly, it should be noted
that the light intensity at the approximate center of the image
appears to be brighter than the light intensity at the corners
and/or edges of the image.

In accordance with an embodiments, lens shading correc-
tion gains may be specified as a two-dimensional grid of gains
per color channel (e.g., Gr, R, B, Gb for a Bayer filter). The
gain grid points may be distributed at fixed horizontal and
vertical intervals. The grid point gain data may be stored in
memory external to the ISP circuitry, thus facilitating access
to the data without necessitating a load of a portion of the grid
into the ISP circuitry’s internal memory. Further, because the
external memory may include an increased capacity over the
ISP circuitry’s internal memory, grid point gain data for the
entire sensor (or multiple sensors if so equipped) may be
stored in the external memory. Thus, as will be described in
more detail below, the ISP circuitry may simply reference a
pointer to an external memory address where the grid point
gain data is stored for the entire sensor and navigate to the
relevant portion of the grid point gain data. The lens shading
correction gains may be represented in the same order as they
Bayer image and, in some embodiments, including a 16-bit
gain per color component. As discussed above in FIG. 21, the
raw frame 310 may include an active region 312 which
defines an area on which processing is performed for a par-
ticular image processing operation. With regard to the lens
shading correction operation, an active processing region,

US 9,105,078 B2

55

which may be referred to as the LSC region, is defined within
the raw frame region 310. As will be discussed below, the
LSC region may be completely inside or at the gain grid
boundaries, otherwise results may be undefined.

For instance, referring to FIG. 56, an LSC region 588 and
a gain grid 590 that may be defined within an input frame are
shown. The LSC region 588 may have a width 592 and a
height 594. Further, the starting pixel 595 of the LSC region
588 may be defined by an x-offset 596 and a y-offset 598 with
respect to a lens shading gain base 600. For example, the
x-offset 596 and y-offset 598 may define a grid frame offset
from the lens shading gain base 300 to the first pixel in the
LSC region 588. Thus, the relative position of the LSC region
588 to the gain grid 600 may be determined.

The horizontal (x-direction) and vertical (y-direction) grid
point intervals 602 and 604, respectively, may be specified
independently for each color channel. These grid point inter-
vals 602 and 604 define the intervals between grid points of
the same color channel. The grid point interval can be set to an
arbitrary value in the horizontal and vertical directions. In the
Raw Processing block lens correction shading discussed
below, the grid point intervals may be set to 1 or between
4-256. In the statistics block lens shading correction, the grid
point intervals may be between 16-256 in units of the Bayer
quad. As will be discussed in more detail below, pixel gain
values may be interpolated based upon the nearby grid gain
values. However, when the intervals are set to 1, these gain
values are not interpolated. Instead, the previous gain value
read from the LSC gain memory is used.

The horizontal (x-direction) and vertical (y-direction) grid
point spacing 606 and 608, respectively, may represent the
position of the gain value of the Bayer quad gains relative to
the first gain at the lens shading gain base 600. This spacing
may be used to set the sampling interval of the gain values in
the gain grid 600. In one example, when the gain grid 600 is
co-located for all colors, the grid spacing is zero. Alterna-
tively, when the grid gain points are equally spaced, the grid
point spacing 606 and 608 will be half the grid intervals 602
and 604, respectively. The grid spacing 606 and 608 will
necessarily be less than the grid intervals 602 and 604, respec-
tively. Further, a lens shading correction gain stride 610 may
represent the distance between two vertically adjacent gain
grids 590.

The lens shading correction (LL.SC) gains may be repre-
sented in the same order as a Bayer image, with 16-bit gain
per color component. The color of the first pixel in the LSC
grid gain may be programmed by software. Each 16-bit rep-
resentation may contain an LSC gain value with 13 fractional
bits (e.g., a 3.13 bit representation). As can be appreciated, by
utilizing the address of lens shading gain base 600 and the
grid offsets, the same gain memory can be used while the
sensor cropping region is changing. For example, instead of
the ISP circuitry having to update grid gain values in internal
memory, the ISP circuitry, by merely updating a few param-
eters (e.g., the grid point intervals 602 and 604), may align the
proper grid points for the changed cropping region. By way of
example only, this may be useful when cropping is used
during digital zooming operations. Further, while the gain
grid 600 shown in the embodiment of FIG. 56 is depicted as
having generally equally spaced grid points, it should be
understood that in other embodiments, the grid points may
not necessarily be equally spaced. For instance, in some
embodiments, the grid points may be distributed unevenly
(e.g., logarithmically), such that the grid points are less con-
centrated in the center of the LSC region 588, but more
concentrated towards the corners of the LSC region 588,
typically where lens shading distortion is more noticeable.

20

40

45

56

In accordance with the presently disclosed lens shading
correction techniques, when a current pixel location is located
outside of the LSC region 588, no gain is applied (e.g., the
pixel is passed unchanged). When the current pixel location is
at a gain grid location, the gain value at that particular grid
point may be used. However, when a current pixel location is
between grid points, the gain may be interpolated using bilin-
ear interpolation. An example of interpolating the gain for the
pixel location “G” on FIG. 21 is provided below.

As shown in F1G. 57, the pixel G is between the grid points
GO0, G1, G2, and G3, which may correspond to the top-left,
top-right, bottom-left, and bottom-right gains, respectively,
relative to the current pixel location G. The horizontal and
vertical size of the grid interval is represented by X and Y,
respectively. Additionally, ii and jj represent the horizontal
and vertical pixel offsets, respectively, relative to the position
of the top left gain GO. Based upon these factors, the gain
corresponding to the position G may thus be interpolated as
follows:

(GO(Y — jp(X — i) +

_ (G - Jpin) + (G2(NX — i) + (G3EDUD)
XY '

(62)

G

The terms in Equation 6a above may then be combined to
obtain the following expression:

GO[XY = X(j) - YD) + GD(P] +

G GI[Y(@) - DD + G2[X () = GDD] + G3LEDH0MN]
XY '

(6b)

In one embodiment, since X and Y are constant for the input
frame, a reciprocal value may be used to avoid a divide as
follows:

G=(GO(Y=j)(X~iD))+(G1(¥-0.11)(0+(G2 () (X~if))+
(G3()(j)) *recipricol)>>32
where reciprocal=(1<<32)/(XY).

In certain embodiments, the gain may have a range of
between 0 and 8x. The interpolated gain between grid points
may retain full precision. Further, because the input pixel is
signed, the output from the lens shading correction is also
signed.

Statistics regarding the lens shading correction input and
output pixels may be useful for further processing in the ISP
pipeline. For example, lens shading correction statistics may
collect a number of pixels that are above a programmable
threshold value before and/or after the lens shading correction
is applied. For example, in some embodiments, a program-
mable threshold value may be set to a sensor’s saturation
value. The lens shading correction statistics may count the
number of pixels at or above the sensor’s saturation value
before lens shading correction is applied. Further, a second
threshold value may be set to a desired clip level at the output
of the lens shading correction. The lens shading correction
statistics may count the number of pixels at or above the
desired clip level after lens shading correction has been
applied. The lens shading correction statistics may also count
the number of pixels that both are above the sensor’s satura-
tion value before lens shading correction is applied and are
above the desired clip level after the lens shading correction is
applied.

The lens shading correction techniques may be further
illustrated by the process 612 shown in FIG. 58. As shown,

US 9,105,078 B2

57

process 612 begins at step 614, at which the position of a
current pixel is determined relative to the boundaries of the
LSC region 588 of FIG. 56. Next, decision logic 616 deter-
mines whether the current pixel position is within the LSC
region 588. If the current pixel position is outside of the LSC
region 588, the process 612 continues to step 618, and no gain
is applied to the current pixel (e.g., the pixel passes
unchanged).

If the current pixel position is within the LSC region 588,
the process 612 continues to decision logic 620, at which it is
further determined whether the current pixel position corre-
sponds to a grid point within the gain grid 590. If the current
pixel position corresponds to a grid point, then the gain value
atthat grid point is selected and applied to the current pixel, as
shown at step 622. If the current pixel position does not
correspond to a grid point, then the process 612 continues to
step 624, and a gain is interpolated based upon the bordering
grid points (e.g., GO, G1, G2, and G3 of FIG. 21). For
instance, the interpolated gain may be computed in accor-
dance with Equations 6a and 6b, as discussed above. There-
after, the process 612 ends at step 626, at which the interpo-
lated gain from step 624 is applied to the current pixel.

As will be appreciated, the process 612 may be repeated for
each pixel of the image data. For instance, as shown in FIG.
59, a three-dimensional profile depicting the gains that may
be applied to each pixel position within a LSC region (e.g.
588) is illustrated. As shown, the gain applied at the corners
628 of the image may be generally greater than the gain
applied to the center 630 of the image due to the greater
drop-offin light intensity at the corners, as shown in FIGS. 54
and 55. Using the presently described lens shading correction
techniques, the appearance of light intensity drop-offs in the
image may be reduced or substantially eliminated. For
instance, FIG. 60 provides an example of how the photograph
632 from FIG. 55 may appear after lens shading correction is
applied. As shown, compared to the original image from FIG.
55, the overall light intensity is generally more uniform
across the image. Particularly, the light intensity at the
approximate center of the image may be substantially equal to
the light intensity values at the corners and/or edges of the
image. Additionally, as mentioned above, the interpolated
gain calculation (Equations 6a and 6b) may, in some embodi-
ments, be replaced with an additive “delta” between grid
points by taking advantage of the sequential column and row
incrementing structure. As will be appreciated, this reduces
computational complexity.

In further embodiments, in addition to using grid gains, a
global gain per color component that is scaled as a function of
the distance from the image center is used. The center of the
image may be provided as an input parameter, and may be
estimated by analyzing the light intensity amplitude of each
image pixel in the uniformly illuminated image. The radial
distance between the identified center pixel and the current
pixel, may then be used to obtain a linearly scaled radial gain,
G,, as shown below:

G, =G, [c]xR ™,

where G, [c] represents a global gain parameter for each color
component ¢ (e.g., R, B, Gr, and Gb components for a Bayer
pattern), and wherein R represents the radial distance
between the center pixel and the current pixel.

With reference to FIG. 61, which shows the LSC region
588 discussed above, the distance R may be calculated or
estimated using several techniques. As shown, the pixel C
corresponding to the image center may have the coordinates
(Xo, Yy), and the current pixel G may have the coordinates (x,

10

15

20

25

30

40

45

50

55

60

65

58

V). In one embodiment, the LSC logic 476 may calculate the
distance R using the following equation:

R:\/(xG_Xo)z"'(yG_YO)z (8).

In another embodiment, a simpler estimation formula,
shown below, may be utilized to obtain an estimated value for
R.

R=axmax(abs(xG—x¢),abs(y—yo) +Px

min(abs(xe-x0),abs(yo-yo)) ©)-

In Equation 9, the estimation coefficients o and § may be
scaled to 8-bit values. By way of example only, in one
embodiment, a may be equal to approximately 123/128 and §
may be equal to approximately 51/128 to provide an esti-
mated value for R. Using these coefficient values, the largest
error may be approximately 4%, with a median error of
approximately 1.3%. Thus, even though the estimation tech-
nique may be somewhat less accurate than utilizing the cal-
culation technique in determining R (Equation 8), the margin
of error is low enough that the estimated values or R are
suitable for determining radial gain components for the
present lens shading correction techniques.

The radial gain G, may then be multiplied by the interpo-
lated grid gain value G (Equations 6a and 6b) for the current
pixel to determine a total gain that may be applied to the
current pixel. The output pixel Y is obtained by multiplying
the input pixel value X with the total gain, as shown below:

Y=(GxG,xX)

Thus, in accordance with the present technique, lens shading
correction may be performed using only the interpolated gain,
both the interpolated gain and the radial gain components.
Alternatively, lens shading correction may also be accom-
plished using only the radial gain in conjunction with a radial
grid table that compensates for radial approximation errors.
For example, instead of a rectangular gain grid 590, as shown
in FIG. 56, a radial gain grid having a plurality of grid points
defining gains in the radial and angular directions may be
provided. Thus, when determining the gain to apply to a pixel
that does not align with one of the radial grid points within the
LSC region 588, interpolation may be applied using the four
grid points that enclose the pixel to determine an appropriate
interpolated lens shading gain.

Referring to FIG. 62, the use of interpolated and radial gain
components in lens shading correction is illustrated by the
process 634. It should be noted that the process 634 may
include steps that are similar to the process 612, described
above in FIG. 58. Accordingly, such steps have been num-
bered with like reference numerals. Beginning at step 636, the
current pixel is received and its location relative to the LSC
region 588 is determined. Next, decision logic 638 deter-
mines whether the current pixel position is within the LSC
region 588. If the current pixel position is outside of the LSC
region 588, the process 634 continues to step 640, and no gain
is applied to the current pixel (e.g., the pixel passes
unchanged). If the current pixel position is within the LSC
region 588, then the process 634 may continue simulta-
neously to step 642 and decision logic 644. Referring first to
step 642, data identifying the center of the image is retrieved.
As discussed above, determining the center of the image may
include analyzing light intensity amplitudes for the pixels
under uniform illumination. This may occur during calibra-
tion, for instance. Thus, it should be understood that step 642
does not necessarily encompass repeatedly calculating the
center of the image for processing each pixel, but may refer to
retrieving the data (e.g., coordinates) of previously deter-
mined image center. Once the center of the image is identi-

(10).

US 9,105,078 B2

59

fied, the process 634 may continue to step 646, wherein the
distance between the image center and the current pixel loca-
tion (R) is determined. As discussed above, the value of R
may be calculated (Equation 8) or estimated (Equation 9).
Then, at step 648, a radial gain component G, may be com-
puted using the distance R and global gain parameter corre-
sponding to the color component of the current pixel (Equa-
tion 7). The radial gain component G, may be used to
determine the total gain, as will be discussed in step 650
below.

Referring back to decision logic 644, a determination is
made as to whether the current pixel position corresponds to
a grid point within the gain grid 590. If the current pixel
position corresponds to a grid point, then the gain value at that
grid point is determined, as shown at step 652. If the current
pixel position does not correspond to a grid point, then the
process 634 continues to step 654, and an interpolated gain is
computed based upon the bordering grid points (e.g., GO, G1,
G2, and G3 of FIG. 21). For instance, the interpolated gain
may be computed in accordance with Equations 6a and 6b, as
discussed above. Next, at step 650, a total gain is determined
based upon the radial gain determined at step 346, as well as
one of the grid gains (step 652) or the interpolated gain (step
654). As can be appreciated, this may depend on which
branch decision logic 644 takes during the process 634. The
total gain is then applied to the current pixel, as shown at step
656. Again, it should be noted that like the process 310, the
process 340 may also be repeated for each pixel of the image
data.

The use of the radial gain in conjunction with the grid gains
may offer various advantages. For instance, using a radial
gain allows for the use of single common gain grid for all
color components. This may greatly reduce the total storage
space required for storing separate gain grids for each color
component. For instance, in a Bayer image sensor, the use of
a single gain grid for each of the R, B, Gr, and Gb components
may reduce the gain grid data by approximately 75%. As will
be appreciated, this reduction in grid gain data may decrease
implementation costs, as grid gain data tables may account
for a significant portion of memory or chip area in image
processing hardware. Further, depending upon the hardware
implementation, the use of a single set of gain grid values may
offer further advantages, such as reducing overall chip area
(e.g., such as when the gain grid values are stored in an
on-chip memory) and reducing memory bandwidth require-
ments (e.g., such as when the gain grid values are stored in an
off-chip external memory).

When applying the gains using the LSC logic 476 results in
a clipped pixel, this may be tracked, and the statistics core
146a and/or 1465 may determine whether to use the pixel in
certain statistics collection operations based on its clipped
status. In one embodiment, the LSC logic 476 may also be
configured to maintain a count of the number of pixels that
were clipped above and below maximum and minimum,
respectively, per color component. Additionally or alterna-
tively, the clipped pixel tracking logic 480 may globally track
pixels clipped throughout the statistics logic 140a. In some
embodiments, when the pixel is clipped, a clipped pixel flag
associated with the clipped pixel may be set to indicate that
the pixel was clipped, that the pixel was clipped by the LSC
logic 476, and/or the extent to which the pixel was clipped.
Inverse Black Level Compensation (IBLC)

Recalling FIG. 48, the output of the lens shading correction
(LSC) logic 476 is subsequently forwarded to the inverse
black level compensation (IBLC) logic 478. The IBLC logic
478 provides gain, offset and clip independently for each
color component (e.g., R, B, Gr, and Gb), and generally

10

15

20

25

30

35

40

45

50

55

60

65

60

performs the inverse function to the BLC logic 472. For
instance, as shown by the following operation, the value of the
input pixel is first multiplied by a gain and then offset by a
signed value, before being clipped:

Y=((X+O01/[c])*G[c])+O[c]

Y=(¥<min[c])?min[c]:(¥>max[c])?max[c/: ¥

where X represents the input pixel value for a given color
component ¢ (e.g., R, B, Gr, or Gb), O[c] represents a signed
16-bit offset for the current color component ¢, G|c] repre-
sents a gain value for the color component ¢, and Y represents
the output pixel value. In one embodiment, the gain G[c] may
have a range of between approximately O to 4x (4 times the
input pixel value X). The gains G|c] may represent 16-bit
unsigned numbers with 14 fraction bits (2.14). The gain may
be applied with rounding, and the min[c] and max[c] may be
signed 16-bit clip values for the minimum and maximum
output values, respectively. The output of the IBLC may be
unsigned. Moreover, if the input pixels to the IBLC logic 478
are expected to go negative (when using a negative offset in
the BLC logic 472), the IBLC logic 478 may not be bypassed
and the minimum clip value may be set to zero. In bypass
mode, the lower 16-bits of the pixel data coming from the
LSC logic 476 may be passed through. Therefore, negative
values (e.g., represented in twos complement) will not be
clipped to zero, resulting instead in large positive numbers at
the 16-bit unsigned output.

In one embodiment, the IBL.C logic 478 may maintain a
count of the number of pixels that were clipped above and
below maximum and minimum, respectively, per color com-
ponent. Additionally or alternatively, the clipped pixel track-
ing counter 480 may globally track pixels clipped throughout
the statistics logic 140a, and/or an associated clipped pixel
flag (e.g., 5304) may be set.

Statistics Collection

Thereafter, the output of the IBLC logic 478 is received by
the statistics core 146, which may provide for the collection
of'various statistical data points about the image sensor(s) 90,
such as those relating to auto-exposure (AE), auto-white bal-
ance (AWB), auto-focus (AF), flicker detection, and so forth.
Additionally, the statistics core 146 may obtain fixed pattern
noise statistics (FPN stats) using the FPN statistics logic 484
and local image statistics (e.g., local tone mapping statistics
and thumbnail statistics) using the local statistics logic 488.
These various statistics collection blocks of the statistics core
1464 will be discussed below.

Before continuing further, it should also be noted that the
various statistics collection blocks of the statistics core 146a
and/or 1465 may vary operation on pixels when the pixels are
clipped (e.g., as indicated by a clipped pixel flag associated
with the pixel, the clipped pixel tracking logic 480, and so
forth). As mentioned above, in some embodiments, when the
pixel is clipped, a clipped pixel flag associated with the
clipped pixel may be set to indicate that the pixel was clipped,
that the pixel was clipped by a particular functional block of
the statistics image processing logic 144, and/or the extent to
which the pixel was clipped. Certain of the statistics collec-
tion blocks may be configured always to exclude a pixel from
statistics collection when the pixel is clipped. Additionally or
alternatively, some or all of the statistics collection blocks
may be programmed by software to consider or not to con-
sider a clipped pixel in it calculations. Thus, the software
controlling the ISP pipe processing logic 80 may determine

US 9,105,078 B2

61

whether to include clipped pixels depending, for example, on
whether including clipped pixels would be detrimental to the
particular statistics collected.

To provide a brief example, the “3A statistics” block dis-
cussed below includes auto-white-balance (AWB) statistics
logic. The AWB logic generally is concerned with red and
blue pixels, but not green. As such, red or blue pixels that have
been clipped (e.g., as indicated by a clipped pixel flag) may
not be used by the AWB statistics logic. On the other hand,
green pixels that have been clipped (e.g., as indicated by a
clipped pixel flag) may be used by the AWB statistics logic.
That is, clipping of red or blue pixels may cause AWB statis-
tics to be unreliable, while clipping of green pixels may not.
This is only one example, and it should be understood that any
of'the various statistics collection blocks may selectively use
pixels depending on whether they have been clipped.

“3A” Statistics Collection

As may be appreciated, AWB, AE, and AF statistics may be
used in the acquisition of images in digital still cameras as
well as video cameras. For simplicity, AWB, AE, and AF
statistics may be collectively referred to herein as “3 A statis-
tics.” In the embodiment of the statistics logic 140a shown in
FIG. 48, the architecture for the 3 A statistics collection logic
482 may be implemented in hardware, software, or a combi-
nation of hardware and software. Further, control software or
firmware (e.g., control logic 84) may be used to analyze the
statistics data collected by the 3A statistics collection logic
482 and control various parameters of the lens (e.g., focal
length), sensor (e.g., analog gains, integration times), and the
ISP pipe processing logic 80 (e.g., digital gains, color correc-
tion matrix coefficients). In some embodiments, the image
processing circuitry 32 may provide flexibility in statistics
collection to enable control software or firmware to imple-
ment various AWB, AE, and AF algorithms.

With regard to white balancing (AWB), the image sensor
response at each pixel may depend on the illumination source,
since the light source is reflected from objects in the image
scene. Thus, each pixel value recorded in the image scene is
related to the color temperature of the light source. For
instance, FIG. 63 shows a graph 789 illustrating the color
range of white areas under low color and high color tempera-
tures for a YCbCr color space. As shown, the x-axis of the
graph 789 represents the blue-difference chroma (Cb) and the
y-axis of the graph 789 represents red-difference chroma (Cr)
of the YCbCr color space. The graph 789 also shows a low
color temperature axis 790 and a high color temperature axis
791. The region 792 in which the axes 790 and 791 are
positioned, represents the color range of white areas under
low and high color temperatures in the YCbCr color space. It
should be understood, however, that the YCbCr color space is
merely one example of a color space that may be used in
conjunction with auto white balance processing. Other
embodiments may use any suitable color space. For instance,
in certain embodiments, other suitable color spaces may
include a Lab (CIELab) color space (e.g., based on CIE
1976), a red/blue normalized color space (e.g., an R/(R+2G+
B) and B/(R+2G+B) color space; a R/G and B/G color space;
a Cb/Y and Cr/Y color space, etc.). Accordingly, for the
purposes of'this disclosure, the axes of the color space used by
the 3 A statistics collection logic 482 may be referred to as C1
and C2 (as is the case in FIG. 63).

When a white object is illuminated under a low color
temperature, it may appear reddish in the captured image.
Conversely, a white object that is illuminated under a high
color temperature may appear bluish in the captured image.
The goal of white balancing is, therefore, to adjust RGB
values such that the image appears to the human eye as if it

5

10

15

20

25

30

40

45

50

55

60

65

62

were taken under canonical light. Thus, in the context of
imaging statistics relating to white balance, color information
about white objects are collected to determine the color tem-
perature of the light source. In general, white balance algo-
rithms may include two main steps. First, the color tempera-
ture of the light source is estimated. Second, the estimated
color temperature is used to adjust color gain values and/or
determine/adjust coefficients of a color correction matrix.
Such gains may be a combination of analog and digital image
sensor gains, as well as ISP digital gains.

For instance, in some embodiments, the imaging device 30
may be calibrated using multiple different reference illumi-
nants. Accordingly, the white point of the current scene may
be determined by selecting the color correction coefficients
corresponding to a reference illuminant that most closely
matches the illuminant of the current scene. By way of
example, one embodiment may calibrate the imaging device
30 using five reference illuminants, a low color temperature
illuminant, a middle-low color temperature illuminant, a
middle color temperature illuminant, a middle-high color
temperature illuminant, and a high color temperature illumi-
nant. As shown in FIG. 64, one embodiment may define white
balance gains using the following color correction profiles:
Horizon (H) (simulating a color temperature of approxi-
mately 2300 degrees), Incandescent (A or IncA) (simulating
a color temperature of approximately 2856 degrees), D50
(simulating a color temperature of approximately 5000
degrees), D65 (simulating a color temperature of approxi-
mately 6500 degrees), and D75 (simulating a color tempera-
ture of approximately 5640 degrees).

Depending on the illuminant of the current scene, white
balance gains may be determined using the gains correspond-
ing to the reference illuminant that most closely matches the
current illuminant. For instance, if the 3 A statistics collection
logic 482 (described in more detail with reference to FIG. 65
below) determines that the current illuminant approximately
matches the reference middle color temperature illuminant,
D50, then white balance gains of approximately 1.37 and 1.23
may be applied to the red and blue color channels, respec-
tively, while approximately no gain (1.0) is applied to the
green channels (GO and G1 for Bayer data). In some embodi-
ments, if the current illuminant color temperature is in
between two reference illuminants, white balance gains may
be determined via interpolating the white balance gains
between the two reference illuminants. Further, while the
present example shows an imaging device being calibrated
using H, A, D50, D65, and D75 illuminants, it should be
understood that any suitable type of illuminant may be used
for camera calibration, such as TL84 or CWF (fluorescent
reference illuminants), and so forth.

As will be discussed further below, several statistics may
be provided for AWB including a two-dimensional (2D) color
histogram, and RGB or YCC sums to provide multiple pro-
grammable color ranges. For instance, in one embodiment,
the 3 A statistics collection logic 482 may provide a set of
multiple pixel condition filters, of which a subset of the mul-
tiple pixel filters may be selected for AWB processing. In one
embodiment, eight sets of filters, each with different config-
urable parameters, may be provided, and three sets of color
range filters may be selected from the set for gathering tile
statistics, as well as for gathering statistics for each floating
window. By way of example, a first selected filter may be
configured to cover the current color temperature to obtain
accurate color estimation, a second selected filter may be
configured to cover the low color temperature areas, and a
third selected filter may be configured to cover the high color
temperature areas. This particular configuration may enable

US 9,105,078 B2

63

the AWB algorithm to adjust the current color temperature
area as the light source is changing. Further, the 2D color
histogram may be used to determine the global and local
illuminants and to determine various pixel filter thresholds for
accumulating RGB values. Again, it should be understood
that the selection of three pixel filters is meant to illustrate just
one embodiment. In other embodiments, fewer or more pixel
filters may be selected for AWB statistics.

Further, in addition to selecting three pixel filters, one
additional pixel filter may also be used for auto-exposure
(AE), which generally refers to a process of adjusting pixel
integration time and gains to control the luminance of the
captured image. For instance, auto-exposure may control the
amount of light from the scene that is captured by the image
sensor(s) by setting the integration time. In certain embodi-
ments, tiles and floating windows of luminance statistics may
be collected via the 3A statistics collection logic 482 and
processed to determine integration and gain control param-
eters.

Further, auto-focus may refer to determining the optimal
focal length of the lens in order to substantially optimize the
focus ofthe image. In certain embodiments, floating windows
of high frequency statistics may be collected and the focal
length of the lens may be adjusted to bring an image into
focus. As discussed further below, in one embodiment, auto-
focus adjustments may use coarse and fine adjustments based
upon one or more metrics, referred to as auto-focus scores
(AF scores) to bring an image into focus. Further, in some
embodiments, AF statistics/scores may be determined for
different colors, and the relativity between the AF statistics/
scores for each color channel may be used to determine the
direction of focus.

As discussed above, the control logic 84, which may be a
dedicated processor in the image processing circuitry 32 of
the device 10, may process the collected statistical data to
determine one or more control parameters for controlling the
imaging device 30 and/or the image processing circuitry 32.
For instance, such the control parameters may include param-
eters for operating the lens of the image sensor 90 (e.g., focal
length adjustment parameters), image sensor parameters
(e.g., analog and/or digital gains, integration time), as well as
ISP pipe processing parameters (e.g., digital gain values,
color correction matrix (CCM) coefficients). Additionally, as
mentioned above, in certain embodiments, statistical process-
ing may occur at a precision of 8-bits and, thus, raw pixel data
having a higher bit-depth may be down-scaled to an 8-bit
format for statistics purposes. As discussed above, down-
scaling to 8-bits (or any other lower-bit resolution) may
reduce hardware size (e.g., area) and also reduce processing
complexity, as well as allow for the statistics data to be more
robust to noise (e.g., using spatial averaging of the image
data). The statistical processing of the statistics logic 146a
and 1465 may, alternatively, use a precision of 16 bits.
Although the 16-bit statistics may be more precise than 8-bit
statistics, some software may rely on legacy 8-bit statistics.
As such, the statistics cores 146a and 1465 may be controlled
by software to operate at 8-bit and/or 16-bit precision.

With the foregoing in mind, FIG. 65 is a block diagram
depicting logic for implementing one embodiment of the 3A
statistics collection logic 482. As shown, the 3A statistics
collection logic 482 may receive a signal 793 representing
Bayer RGB data which, as shown in FIG. 48, may correspond
to the output of the inverse BLC logic 478. The 3A statistics
collection logic 482 may process the Bayer RGB data 793 to
obtain various statistics 794, which may represent the output
STATSO of the 3 A statistics collection logic 482, as shown in

10

15

20

25

30

35

40

45

50

55

60

65

64
FIG. 48, or alternatively the output STATS1 of a statistics
logic associated with the Sensor] statistics processing unit
1405.

In the illustrated embodiment, for the statistics to be more
robust to noise, the incoming Bayer RGB pixels 793 are first
averaged by logic 795. For instance, the averaging may be
performed in a window size of 4x4 sensor pixels consisting of
four 2x2 Bayer quads (e.g., a 2x2 block of pixels representing
the Bayer pattern), and the averaged red (R), green (G), and
blue (B) values in the 4x4 window may be computed and, if
desired, converted to 8-bits. This process is illustrates in more
detail with respect to FIG. 66, which shows a 4x4 window 796
of pixels formed as four 2x2 Bayer quads 797. Using this
arrangement, each color channel includes a 2x2 block of
corresponding pixels within the window 796, and same-col-
ored pixels may be summed and averaged to produce an
average color value for each color channel within the window
796. For instance, red pixels 799 may be averaged to obtain an
average red value (R ;) 803, and the blue pixels 800 may be
averaged to obtain an average blue value (B ;,) 804 within the
sample 796. With regard to averaging of the green pixels,
several techniques may be used since the Bayer pattern has
twice as many green samples as red or blue samples. In one
embodiment, the average green value (G,;) 802 may be
obtained by averaging just the Gr pixels 798, just the Gb
pixels 801, or all of the Grand Gb pixels 798 and 801 together.
In another embodiment, the Gr and Gb pixels 798 and 801 in
each Bayer quad 797 may be averaged, and the average of the
green values for each Bayer quad 797 may be further aver-
aged together to obtain G ;- 802. As may be appreciated, the
averaging of the pixel values across pixel blocks may provide
for the reduction of noise. Further, it should be understood
that the use of a 4x4 block as a window sample is merely
intended to provide one example. Indeed, in other embodi-
ments, any suitable block size may be used (e.g., 8x8, 16x16,
32x32, etc.). It may be appreciated that a pixel may be con-
sidered clipped if any of the average values (R ;) 803, (B ;)
804, or (G ;) 802 is clipped.

Thereafter, the downscaled Bayer RGB values 806 are
input to the color space conversion logic units 807 and 808.
Because some of the 3A statistics data may rely upon pixel
pixels after applying color space conversion, the color space
conversion (CSC) logic 807 and CSC logic 808 may be con-
figured to convert the down-sampled Bayer RGB values 806
into one or more other color spaces. In one embodiment, the
CSC logic 807 may provide for a non-linear space conversion
and the CSC logic 808 may provide for a linear space con-
version. Thus, the CSC logic units 807 and 808 may convert
the raw image data from sensor Bayer RGB to another color
space (e.g., SRGB,,....» SRGB, YCbCr, etc.) that may be more
ideal or suitable for performing white point estimation for
white balance.

In the present example, the non-linear CSC logic 807 may
be configured to perform a 3x3 matrix multiply, followed by
a non-linear mapping implemented as a lookup table, and
further followed by another 3x3 matrix multiply with an
added offset. This allows for the 3A statistics color space
conversion logic 807 to replicate the color processing of the
RGB processing logic 160 in the ISP pipe processing logic 80
(e.g., applying white balance gain, applying a color correc-
tion matrix, applying RGB gamma adjustments, and perform-
ing color space conversion) for a given color temperature. It
may also provide for the conversion of the Bayer RGB values
to a more color consistent color space such as CIELab, or any

US 9,105,078 B2

65

of the other color spaces discussed above (e.g., YCbCr, a
red/blue normalized color space, etc.). Under some condi-
tions, a Lab color space may be more suitable for white
balance operations because the chromaticity is more linear
with respect to brightness.

As shown in FIG. 65, the output pixels from the Bayer RGB
down-scaled signal 806 are processed with a first 3x3 color
correction matrix (3A_CCM), referred to herein by reference
number 808. In the present embodiment, the 3A_CCM 809
may be configured to convert from a camera RGB color space
(camRGB), to a linear sSRGB calibrated space (sSRGB,,,,.,,)- A
programmable color space conversion that may be used in
one embodiment is provided:

$Rypowr =3A_CCM_00*R + 3A_CCM_01*G +
3A_CCM_02*B + 3A_CCM_OffsetR
G e = 3A_CCM_10*R + 3A_CCM_11*G +
3A_CCM_12*B + 3A_CCM_OffsetG
Benr = 3A_CCM_20*R + 3A_CCM_21*G +
3A_CCM_22*B + 3A_CCM_OffsetB
SRypmoar = (Rypmomr < 3A_CCM_MIN[0]) ? 3A_CCM_MINJ[0]:
(SR jnoer > 3A_CCM_MAX[0]):

3A_CCM_MAX[0]):5R g
G om = (8Gpome < 3A_CCM_MIN[1]) ? 3A_CCM_MIN[1]:
(5Gimem > 3A_CCM_MAX][1]):

3A_CCM_MAX[1]: $Gi3r0
Bear = (5Gimear < 3A_CCM_MINJ2]) ? 3A_CCM_MIN[2]:
(sBjy,0r > 3A_CCM_MAX[2]):

3A_CCM_MAX[2]: sBjenr

where the variables 3A_CCM_ 00 through 3A_CCM_ 22
represent signed coefficients of the matrix 808, the variable
3A_CCM_OffsetR represents a red pixel offset value, the
variable 3A_CCM_OffsetG represents a green pixel offset
value, and the variable 3A_CCM_OffsetB represents a blue
pixel offset value. The variables 3A_CCM_MINJ[c] and
3A_CCM_MAX][c] refer to maximum and minimum allow-
able pixel values, where c represents the color component red
(0), green (1), or blue (2). These values may vary depending,
for example, on the bit depth of the image data. Thus,
each of the sR ;. ..» $Giinear a0d $By,,..,» components of the
sRGB;,... color space may be determined first determining
the sum of the red, blue, and green down-sampled Bayer RGB
values with corresponding 3A_CCM coefficients applied,
and then clipping this value to the minimum and maximum
pixel values for 8-16-bit pixel data, as appropriate. The result-
ing sSRGB,,,... values are represented in FIG. 65 by reference
number 810 as the output of the 3A_CCM 809. Additionally,
the 3 A statistics collection logic 482 may maintain a count of
the number of clipped pixels for each of the sR,,,...» SG 10007
and sB,,,... components, as expressed below:

15

20

25

30

35

40

45

66

-continued

3A_CCM_B_clipcount_low : number of sBj;, .0
pixels < 3A_CCM_MINJ2] clipped
3A_CCM_B_clipcount_high : number of sBy,..,
pixels > 3A_CCM_MAX]|2] clipped

Next, the sRGB,,,.,.. pixels 810 may be processed using a
non-linear lookup table 811 to produce sSRGB pixels 812. The
lookup table 811 may contain entries of 16-bit values, with
each table entry value representing an output level. In one
embodiment, the look-up table 811 may include 257 evenly
distributed input entries. A table index may represent values
in steps of 1 to 256, depending on the bit depth (e.g., 8-bit to
16-bit). When the input pixel value falls between intervals,
the output values may be linearly interpolated.

As may be appreciated, the sSRGB color space may repre-
sent the color space of the final image produced by the imag-
ing device 30 for a given white point, as white balance statis-
tics collection is performed in the color space of the final
image produced by the image device. In one embodiment, a
white point may be determined by matching the characteris-
tics of the image scene to one or more reference illuminants
based, for example, upon red-to-green and/or blue-to-green
ratios. For instance, one reference illuminant may be D65, a
CIE standard illuminant for simulating daylight conditions.
In addition to D65, calibration of the imaging device 30 may
also be performed for other different reference illuminants,
and the white balance determination process may include
determining a current illuminant so that processing (e.g.,
color balancing) may be adjusted for the current illuminant
based on corresponding calibration points. By way of
example, in one embodiment, the imaging device 30 and 3A
statistics collection logic 482 may be calibrated using, in
addition to D65, a cool white fluorescent (CWF) reference
illuminant, the TL.84 reference illuminant (another fluores-
cent source), and the IncA (or A) reference illuminant, which
simulates incandescent lighting. Additionally, as discussed
above, various other illuminants corresponding to different
color temperatures (e.g., H, IncA, D50, D65, and D75, etc.)
may also be used in camera calibration for white balance
processing. Thus, a white point may be determined by ana-
lyzing an image scene and determining which reference illu-
minant most closely matches the current illuminant source.

Referring still to the non-linear CSC logic 807, the sSRGB
pixel output 812 of the look-up table 811 may be further
processed with a second 3x3 color correction matrix 813,
referred to herein as 3A_CSC. In the depicted embodiment,
the 3A_CSC matrix 813 is shown as being configured to
convert from the sSRGB color space to the YCbCr color space,
though it may be configured to convert the sSRGB values into
other color spaces as well. By way of example, the following
programmable color space conversion may be used:

Y=3A_CSC_00*sR + 3A_CSC_01*sG + 3A_CSC_02%sB + 3A_CSC_OffsetY

Y= (Y <3A_CSC_MIN_Y) ? 3A_CSC_MIN_Y: (Y > 3A_CSC_MAX_Y) ? 3A_CSC_MAX_Y:Y
C1=3A_CSC_10*sR + 3A_CSC_11*sG + 3A_CSC_12*sB

C2=3A_CSC_20*sR + 3A_CSC_21*sG + 3A_CSC_22*sB

3A_CCM_R_clipcount_low : number of sR,...,.
pixels < 3A_CCM_MINTJO0] clipped
3A_CCM_R_clipcount_high : number of sRy;,cqr
pixels > 3A_CCM_MAX][0] clipped
3A_CCM_G_clipcount_low : number of sGy,,eqr
pixels < 3A_CCM_MINTJ1] clipped
3A_CCM_G_clipcount_high : number of sGy,,cqy
pixels > 3A_CCM_MAX]1] clipped

60

65

where 3A_CSC__00-3A_CSC__22 represent signed coeffi-
cients for the matrix 813 and 3A_CSC_OffsetY represent
signed offsets, and C1 and C2 represent different colors (e.g.,
blue-difference chroma (Cb) and red-difference chroma (Cr),
respectively, in one embodiment). It should be understood
that C1 and C2 may represent any suitable difference chroma
colors, and need not necessarily be Cb and Cr. At this point,
camC1 and camC2 pixels may be signed. The chroma scaling
is optionally performed next:

US 9,105,078 B2

Cl1 = C1 * ChromaScale * 255 / ((Y>>8) ? (Y>>8): 1); and
c2 = C2 * ChromaScale * 255 / ((Y>>8) ? (Y>>8): 1);

where ChromaScale is a scaling factor between 0 and 8.
ChromaScale may take two possible values depending on the
sign of camCl1:

ChromaScale = ChromaScale0

ChromaScalel

if (C1<0)
otherwise

Finally, Chroma offsets (e.g., CSC_OffsetC1 and CSC_Oft-
setC2) are added and chroma pixels are clipped to generate
unsigned pixel values:

5

10

15

68

The output pixels from the Bayer RGB down-sample sig-
nal 806 may also be provided to the linear color space con-
version logic 808, which may be configured to implement a
camera color space conversion. For instance, the output pixels
806 from the Bayer RGB down-sample logic 795 may be
processed via another 3x3 color conversion matrix
(3A_CSC2) 815 of the CSC logic 808 to convert from sensor
RGB (camRGB) to a linear white-balanced color space
(camYC1C2), wherein C1 and C2 may correspond to Cb and
Cr, respectively. In one embodiment, the chroma pixels may
be scaled by luma, which may be beneficial in implementing
acolor filter that has improved color consistency and is robust
to color shifts due to luma changes. An example of how the
camera color space conversion may be performed using the
3x3 matrix 815 is provided below:

camY
camY

=3A_CSC2_00*R + 3A_CSC2_01*G + 3A_CSC2_02*B + 3A_ CSC2_OffsetY
= (camY <3A_ CSC2_MIN_Y) ? 3A_CSC2_MIN_Y: (camY > 3A_CSC2_MAX_Y)

?3A_CSC2_MAX_Y: camY

camC1
camC2

(R0

-
-

A_CSC2_10*R + 3A_CSC2_11*G + 3A_CSC2_12*B)
A_CSC2_20*R + 3A_CSC2_21*G + 3A_CSC2_22*B)

Cl=Cl1 + 3A_ CSC_OffsetC1
C2=C2 +3A_ CSC_OffsetC2
Cl=(C1 <3A_CSC_MIN_C1) ? 3A_CSC_MIN_C1:
(C1>3A_CSC_MAX_Cl1)?3A_CSC_MAX_C1:C1
C2=(C2 <3A_CSC_MIN_C2) ? 3A_CSC_MIN_C2:
(C2>3A_CSC_MAX_(C2)?3A_CSC_MAX_C2:C2

where 3A_CSC_MIN_C1, 3A_CSC_MIN_C2, 3A_CSC_
MAX_C1, and 3A_CSC_MAX_C2 represent maximum and
minimum values. The resulting output of the linear transform
813 may be a YC1C2 signal 814.

As shown above, in determining each component of
YCbCr, appropriate coefficients from the matrix 813 are
applied to the sSRGB values 812 and the result is summed with
a corresponding offset. Essentially, this step is a 3x1 matrix
multiplication step. This result from the matrix multiplication
is then clipped between a maximum and minimum value. The
associated minimum and maximum clipping values may be
programmable and may depend, for instance, on particular
imaging or video standards (e.g., BT.601 or BT.709) being
used.

The 3 A statistics collection logic 482 may also maintain a
count of the number of clipped pixels for each of the Y, C1,
and C2 components, as expressed below. In some embodi-
ments, the number of clipped pixels of each of the Y, C1, and
C2 components may be maintained independent of clipped
pixel tracking using clipped pixel flags (e.g., as shown in FIG.
223). The 3A statistics collection logic 482 may vary its
operation based on either or both forms of clipped pixel
tracking

3A_CSC_Y _clipcount_low : number of Y pixels <3A_CSC_MIN_Y
clipped

3A_CSC_Y _clipcount_high : number of Y pixels > 3A_CSC_MAX Y
clipped

3A_CSC_C1_clipcount_low : number of C1 pixels < 3A_CSC_MIN_C1
clipped

3A_CSC_Cl1_clipcount_high : number of C1 pixels > 3A_CSC_MAX_C1
clipped

3A_CSC_C2_clipcount_low : number of C2 pixels < 3A_CSC_MIN_C2
clipped

3A_CSC_C2_clipcount_high : number of C2 pixels > 3A_CSC_MAX_C2
clipped

25

30

35

40

45

55

60

65

where 3A_CSC2_00-3A_CSC2_ 22 represent signed coef-
ficients for the matrix 815, 3A_CSC2_OffsetY represents a
signed offset for camY, and camC1 and camC2 represent
different colors (e.g., blue-difference chroma (Cb) and red-
difference chroma (Cr), respectively). As shown above, to
determine camY, corresponding coefficients from the matrix
815 are applied to the Bayer RGB values 806, and the result
is summed with 3A_Offset2Y. This result is then clipped
between a maximum and minimum value. As discussed
above, the clipping limits may be programmable.

At this point, the camC1 and camC2 pixels of the output
816 are signed. As discussed above, in some embodiments,
chroma pixels may be scaled. For example, one technique for
implementing chroma scaling is shown below:

camC1
camC2

=camC1 * ChromaScale * 255 / ((camY>>8) ? (camY>>8): 1)
= camC2 * ChromaScale * 255 / ((camY>>8) ? (camY>>8): 1)

where ChromaScale represents a floating point scaling factor
between 0 and 8. The expression (camY ? camY:1) is meant
to prevent a divide-by-zero condition. That is, if camY is
equal to zero, the value of camY is set to 1. Further, in one
embodiment, ChromaScale may be set to one of two possible
values depending on the sign of camCl1. For instance, as
shown below, ChomaScale may be set to a first value (Chro-
maScale0) if camC1 is negative, or else may be set to asecond
value (ChromaScalel):

ChromaScale = ChromaScale0

ChromaScalel

if(camC1 < 0)
otherwise

Thereafter, chroma offsets are added, and the camC1 and
camC2 chroma pixels are clipped, as shown below, to gener-
ate corresponding unsigned pixel values:

camCl =C1+3A_ CSC2_OffsetCl
camC2 =C2+3A_ CSC2_OffsetC2
camCl = (camCl <3A_CSC2_MIN_C1)?

3A_CSC2_MIN_CI: (camC1 >
3A_CSC2_MAX_C1)? 3A_CSC2_MAX_C1: camCl

US 9,105,078 B2

69

-continued

camC2 = (camC2 <3A_CSC2_MIN_C2)?
3A_CSC2_MIN_C2: (camC2 >

3A_CSC2_MAX_C2)? 3A_CSC2_MAX_C2: camC2

wherein 3A_CSC2_00-3A_CSC2_22 are signed coeffi-
cients of the matrix 815, and 3A_Offset2C1 and
3A_Oftset2C2 are signed offsets. Further, the number of
pixels that are clipped for camY, camC1, and camC2 may be
counted, as shown below:

5

70

Count value if the bin indices are in the range [0, 63], as
shown below. Effectively, this allows for weighting the color
counts based on luma values (e.g., brighter pixels are
weighted more heavily, instead of weighting everything

equally (e.g., by 1)):

if (Clidx >= 0 && Clidx <= 63 && C2idx >= 0 && C2idx <= 63)
StatsC1C2Hist[C2idx][C1lidx] += Count;

3A_CSC2_Y_clipcount_low
3A_CSC2_Y_clipcount_high
3A_CSC2_C1_clipcount_low
3A_CSC2_C1_clipcount_high
3A_CSC2_C2_clipcount_low
3A_CSC2_C2_clipcount_high

: number of camY pixels <3A_CSC2_MIN_Y clipped

: number of camY pixels > 3A_CSC2_MAX_Y clipped

: number of camCl1 pixels <3A_CSC2_MIN_CI1 clipped
: number of camCl1 pixels > 3A_CSC2_MAX_Cl1 clipped
: number of camC?2 pixels <3A_CSC2_MIN_C2 clipped
: number of camC?2 pixels > 3A_CSC2_MAX_C2 clipped

Thus, the non-linear and linear color space conversion
logic 807 and 808 may, in the present embodiment, provide
pixel data in various color spaces: sSRGBy,,.., (signal 810),
sRGB (signal 812), YCbYr (signal 814), and camYCbCr
(signal 816). It should be understood that the coefficients for
each conversion matrix 809 (3A_CCM), 813 (3A_CSC), and
815 (3A_CSC2), as well as the values in the look-up table
811, may be independently set and programmed.

Referring still to FIG. 65, the chroma output pixels from
either the non-linear color space conversion (YCbCr 814) or
the camera color space conversion (camYCbCr 816) may be
used to generate a two-dimensional (2D) color histogram
817. As shown, selection logic 818 and 819, which may be
implemented as selection logics or by any other suitable
logic, may be configured to select between luma and chroma
pixels from either the non-linear or camera color space con-
version. The selection logic 818 and 819 may operate in
response to respective control signals, which, in one example,
may be supplied by the main control logic 84 of the image
processing circuitry 32 (FIG. 7) and may be set via software.

For the present example, it may be assumed that the selec-
tion logic 818 and 819 select the YC1C2 color space conver-
sion (814), where the first component is Luma, and where C1,
C2 are the first and second colors (e.g., Cb, Cr). A 2D histo-
gram 817 in the C1-C2 color space is generated for one
window. For instance, the window may be specified with a
column start and width and a row start and height. The win-
dow position and size may be a multiple of 4 pixels. In one
example, the color histogram 817 may include 64x64 bins for
a total of 4096 bins. The bin boundaries may be at a fixed
interval. To allow for zooming and panning the histogram
collection in specific areas of the colorspace, a pixel scaling
and offset may be specified. Values of C1 and C2 may be in
the range [0,63] after offset and scaling, and may be used to
determine the bin. The bin indices for C1 and C2, referred to
herein by Clidx and C2idx, may be determined as follows:

Clidx = (Cl_scale * (C1 - C1_offset))>>16
C2idx = (C2_scale * (C2 - C2_offset))>>16

In the equations above, C1 scale and C2 scale may be 17-bit
unsigned integer scale values, and C1 offset and C2 offset
may be 16-bit unsigned values. Allowed values for C1_scale
and C2_scale may be in the range 0 to 2°16 to represent a
floating point scale between 0 and 1. Once the indices are
determined, the color histogram bins are incremented by a

20

25

30

35

40

45

50

55

60

65

where Count is determined based on the selected luma value,
Y in this example. As may be appreciated, the steps repre-
sented above may be implemented by a bin update logic block
821. Further, in one embodiment, multiple luma thresholds
may be set to define luma intervals. By way of example, 15
luma thresholds referred to as Ythd[15] may define 16 luma
intervals (e.g., with a first interval starting at 0 and the last
interval ending at 65535). The Count values CountArr[15]
may be defined for each interval. For instance, Count may be
selected (e.g., by pixel condition logic 820) based on luma
thresholds as follows:

Count = CountArr[15]; // initialize to last interval
for (level=0; level < 15)

if (Y <= Ythd[level])

Count = CountArr[level];
break;

As should be appreciated, in some embodiments, the Count
value may or may not include clipped pixels. That is, in some
embodiments, software may be able to program the bin
update logic block 821 to consider a pixel only when the
clipped pixel flag of the pixel has not been set.

With the foregoing in mind, FIG. 67 illustrates the color
histogram with scaling and offsets set to zero for both C1 and
C2. The divisions within the CbCr space represent each of the
64x64 bins (4096 total bins). FIG. 68 provides an example of
zooming and panning within the 2D color histogram for addi-
tional precision, in which the input data has a bit depth of 16
bits. A rectangular area 822 specifies the location of the
64x64 bins.

At the start of a frame of image data, bin values are initial-
ized to zero. For each pixel going into the 2D color histogram
817, the bin corresponding to the matching C1C2 value is
incremented by a determined Count value which, as dis-
cussed above, may be based on the luma value. For each bin
within the 2D histogram 817, the total pixel count is reported
as part of the collected statistics data (e.g., STATSO0). In one
embodiment, the total pixel count for each bin may have a
resolution of 25-bits, whereby an allocation of internal
memory equal to 4096x25 bits is provided.

In some embodiments, RGB, sRGB,,,.,,, SRGB orYC1C2
sums may be accumulated conditional on camYCIC2 or

US 9,105,078 B2

71
YCI1C2 pixel masks or camYCI1C2 or YC1C2 pixel condi-
tions. These sums may be accumulated in conditional accu-
mulation logic 823 as shown in FIG. 65. A more detailed view
of'the conditional accumulation logic 823 appears in FIG. 69.
In the example of FIG. 69, the C1C2 signal 814 or the camY

72

scale between 0 and 1.0. The weight may be looked up in the
table if the mask indices are in the range [0, 63], and applied
to the input pixel values. When the pixel mask 839 is disabled,
all pixels are accumulated in the pixel mask 839 by setting
weight to 1. The process may be summarized as follows:

if (Pixel Mask is disabled)

Weight =1
else

Weight =0

if (Clidx >= 0 && Clidx <= 63 && C2idx >= 0 && C2idx <= 63 && Ymin <=Y <=Ymax
Weight = StatsC1C2Mask[C2idx][C1idx];

R, += (R * Weight (0rY,,,.))
Gpm += (G * Weight (or Cl,,,,)
B,,.. += (B * Weight (or Cl1,,,.))
Count = Count + Weight

signal 816 may be selected by selection logic 824, 825, 826,
and/or 827. The selected signal C1C2 signal 814 or the camY
signal 816 may be used in conditional accumulation, as may
be the RGB signal 806, the sSRGBlinear signal 810, the sSRGB
signal 812, as selectable by selection logic 828, 829, 830,
and/or 831. That is, the output of the selection logic 828, 829,
830, and/or 831 may be used to develop one of four counts,
Countl, Count2, Count3, or Count4, in the illustrated
example, via accumulation logic 832, 833, 834, and 835,
respectively. As will be discussed below, the accumulation
logic 832, 833, 834, and/or 835 may develop the counts based
onone of several (e.g., one of eight different) pixel conditions
836, 837, and/or 838. Any other suitable number of different
conditions may be employed. Additionally or alternatively,
the accumulation logic 832, 833, 834, and/or 835 may
develop the counts based on a pixel mask 839 or the camY
signal 816 (clipped in clipping logic 840. Selection logic 841,
842, 843, and 844 may select from among these signals.

As noted above, in some embodiments, RGB, sRGB,,,....,
sRGB or YC1C2 sums may be accumulated conditional on a
camYC1C2 or YC1C2 pixel mask. The Y, C1 and C2 values
from either output of the non-linear color space conversion or
the output of the camera color space conversion may be used
to conditionally select RGB, sRGB,,..., SRGB or YC1C2
values to accumulate. In the example of FIG. 69, the pixel
mask defines a 2D weighting map indexed by C1C2 colors. It
may also conditioned by brightness—that is, a pixel may be
included in the statistics if Y, <=Y<=Y,, .-

The 2D pixel filter mask 839 essentially may be the inverse
of the 2D color histogram 817. It may contain a 2-dimen-
sional array of weights. The mask may be specified as a 64x64
2D weight map. Each entry may contain a 4-bit weight, but
any other suitable size weighting value may be used. The
current C1 and C2 values may be scaled to provide the index
into the 2D table to lookup the weight. The weight may be
used to multiply the input value (RGB, sRGB,,,...., SRGB, or
YC1C2) for each qualifying pixel and then added to the RGB,
sRGB;,,...» SRGB, or YC1C2 pixel sums. The mask indices in
C1 and C2, Clidx and C2idx, may be determined as follows:

Clidx = (Cl_scale * (C1 - C1_offset))>>16; and
C2idx = (C2_scale * (C2 - C2_offset))>>16;

where C1_scale and C2_scale are 17-bit unsigned integer
scale values, and C1_offset and C2_offsetare 16-bitunsigned
values. The allowed values of C1_scale and C2_scale may be
in the range 0 to 2716, and thus may represent a floating point

20

25

30

35

40

45

50

55

60

Similarly to the pixel filter condition, in addition to pixel
sums, the sum of horizontal and vertical positions of pixels
that satisfied the pixel mask is reported. Doing so may allow
software to compute the centroid of the window for the pixels
that satisfy the condition by taking the average of the hori-
zontal and vertical position sums.

The following statistics may be collected for qualifying
pixels: 32-bit sums in 8-bit mode Or 40-bit sums in 16-bit
mode: (R Gsumi Bsum) Or (SRZinearisumi SGZinearfsums

sums

SBZi}’leaVﬁSum)’ or (SRSllm’ SGSllm’ SBSMM) or (Ysltm’ Clsum’
C2,,..), a 24-bit pixel count, Count, which is a sum of the

number of pixels that were included in the statistic (software
can use the sum to generate an average in a tile or window).
Note also that the Count may be incremented by the weights
such that the Count can be used for computing the weighted
average values from the sums.

Referring back to FIG. 65, the Bayer RGB pixels (signal
806), sRGB,,,,.., pixels (signal 810), sSRGB pixels (signal
812), and YC1C2 (e.g., YCbCr) pixels (signal 814) are pro-
vided to the set of pixel conditions 836, 837 . .. 838, whereby
RGB, sRGB;,,..» sSRGB, YCIC2, or camYC1C2 sums may
be accumulated conditionally upon either camYCI1C2 or
YCI1C2 pixel conditions. That is, Y, C1 and C2 values from
either output of the non-linear color space conversion
(YCI1C2) or the output of the camera color space conversion
(camYCIC2) are used to conditionally select RGB,
sRGB,,.... SRGB or YC1C2 values to accumulate. While the
present embodiment depicts the 3 A statistics collection logic
482 as having 8 conditions 836, 837 . . . 838, it should be
understood that any number of pixel condition filters may be
provided.

The pixels selected by the selection logic 828, 829, 830,
and/or 831 may be accumulated. In one embodiment, the
pixel condition may be defined using thresholds C1_min,
C1_max, C2_min, C2_max, as shown in graph 789 of FIG.
63. A pixel is included in the statistics if it satisfies the fol-
lowing conditions:

C1_min<=C1<=C1_max 1.
C2_min<=C2<=C2_max 2.
abs((C2_delta*C1)-(C1_delta* C2)+Offset)<dis-

tance_max 3.
Y <=Y<=Y,.. 4.

Referring to graph 845 of FIG. 70, in one embodiment, the
point 846 represents the values (C2, C1) corresponding to the
current YC1C2 pixel data. C1_delta may be determined as the

US 9,105,078 B2

73

difference between C1__1 and C1_0, and C2_delta may be
determined as the difference between C2 1 and C2 0. As
shown in FIG. 70, the points (C1_0, C2_0) and (C1_1,
C2__1) may define the minimum and maximum boundaries
for C1 and C2. The Offset may be determined by multiplying
C1_deltaby the value 848 (C2 intercept) at where the line 847
intercepts the axis C2. Thus, assuming that Y, C1, and C2
satisfy the minimum and maximum boundary conditions, the
selected pixels (Bayer RGB, sRGB,,,,..,» sSRGB, and YC1C2/
camYC1C2) is included in the accumulation sum if its dis-
tance 849 from the line 847 is less than distance_max 850,
which may be distance 849 in pixels from the line multiplied
by a normalization factor:

distance_max=distance*sqrt(C1_delta"2+C2_delta™2)

In this example, distance, C1_delta and C2_delta may have a
range of —255 to 255 when operating in 8-bit mode. Thus,
distance_max 850 may be represented by 17 bits for 8-bit
mode operation. When operating in 16-bit mode, distance
C1_deltaand C2_delta may have a range of -65535 to 65535.
Thus, distance_max 834 may be represented by 33 bits for
16-bit mode operation. The points (C1_0,C2_0)and (C1__
1, C2_ 1), as well as parameters for determining distance_
max (e.g., normalization factor(s)), may be provided as part
of the pixel condition logic 836, 837 . . . 839. As may be
appreciated, the pixel condition logic 836, 837 . .. 839 may be
configurable/programmable.

While the example shown in FIG. 70 depicts a pixel con-
dition based on two sets of points (C1_0,C2_0)and (C1_1,
C2_ 1), in additional embodiments, certain pixel filters may
define more complex shapes and regions upon which pixel
conditions are determined. For instance, FIG. 71 shows
embodiments where a pixel filter may define a five-sided
polygon 851 using points (C1_0, C2_0), (C1_1, C2_1),
(C1_2,C2_2) and (C1_3, C2_3), and (C1_4, C2_4).
Each side 852a-¢ may define a line condition. However,
unlike the case shown in FIG. 70 (e.g., the pixel may be on
either side of line 847 as long as distance_max is satisfied),
the condition may be that the pixel (C1, C2) may be located on
the side of the line 852a-e¢ such that it is enclosed by the
polygon 851. Thus, the pixel (C1, C2) is counted when the
intersection of multiple line conditions is met. For instance, in
FIG. 71, such an intersection occurs with respect to pixel
853a. However, pixel 8535 fails to satisfy the line condition
for line 852d and, therefore, would not be counted in the
statistics when processed by a pixel filter configured in this
manner.

In a further embodiment, shown in FIG. 72, a pixel condi-
tion may be determined based on overlapping shapes. For
instance, FIG. 72 shows how a pixel filter may have pixel
conditions defined using two overlapping shapes, here rect-
angles 8548a and 8545 defined by points (C1_0, C2_0),
(Cl_1, C2_1), (C1_2, C2_2) and (C1_3, C2_3) and
points (C1_4,C2_4),(C1_5,C2_5),(Cl1_6,C2_6) and
(C1_7,C2_7),respectively. In this example, a pixel (C1, C2)
may satisfy line conditions defined by such a pixel filter by
being enclosed within the region collectively bounded by the
shapes 854a and 8545 (e.g., by satisfying the line conditions
of each line defining both shapes). For instance, in FIG. 72,
these conditions are satisfied with respect to pixel 855a. How-
ever, pixel 8555 fails to satisty these conditions (specifically
with respect to line 8564 of rectangle 8544 and line 85556 of
rectangle 8545) and, therefore, would not be counted in the
statistics when processed by a pixel filter configured in this
manner.

For each pixel filter, qualifying pixels are identified based
on the pixel conditions and, for qualifying pixel values, the

10

15

20

25

30

35

40

45

50

55

60

65

74

following statistics may be collected by the 3A statistics
engine 742: 32-bit sums in 8-bit mode or 36-bit sums in 16-bit
mode: (Rsumi Gsumi Bsum) or (SRZinearisumi SGZinearfsums
SBiinear_sum)s O (SR s $Gyms SBam) or (Y., Cl
C2,,,,) and a 24-bit pixel count, Count, which may represent
the sum of the number of pixels that were included in the
statistic. In one embodiment, software may use the sum to
generate an average in within a tile or window.

When the camYCI1C2 pixels are selected by a pixel filter,
color thresholds may be performed on scaled chroma values.
For instance, since chroma intensity at the white points
increases with luma value, the use of chroma scaled with the
luma value in the pixel filter 824 may, in some instances,
provide results with improved consistency. For example,
minimum and maximum luma conditions may allow the filter
to ignore dark and/or bright areas. If the pixel satisfies the
YCIC2 pixel condition, the RGB, sRGB,,... sRGB or
YCI1C2 values are accumulated. The selection of the pixel
values by the selection logic 825 may depend on the type of
information needed. For instance, for white balance, typically
RGB or sRGB,,,. ., pixels are selected. For detecting specific
conditions, such as sky, grass, skin tones, etc.,aYCC or sSRGB
pixel set may be more suitable.

In the present embodiment, eight sets of pixel conditions
may be defined, one associated with each of the pixel filters.
Some pixel conditions may be defined to carve an area in the
C1-C2 color space (FIG. 63) where the white point is likely to
be. This may be determined or estimated based on the current
illuminant. Then, accumulated RGB sums may be used to
determine the current white point based on the R/G and/or
B/G ratios for white balance adjustments. Further, some pixel
conditions may be defined or adapted to perform scene analy-
sis and classifications. For example, some pixel filters and
windows/tiles may be used to detect for conditions, such as
blue sky in a top portion of an image frame, or green grass in
abottom portion of an image frame. This information can also
be used to adjust white balance. Additionally, some pixel
conditions may be defined or adapted to detect skin tones. For
such filters, tiles may be used to detect areas of the image
frame that have skin tone. By identifying these areas, the
quality of skin tone may be improved by, for example, reduc-
ing the amount of noise filter in skin tone areas and/or
decreasing the quantization in the video compression in those
areas to improve quality.

The 3 A statistics collection logic 482 may also provide for
the collection of luma data. For instance, the luma value,
camY, from the camera color space conversion (camYC1C2)
may be used for accumulating luma sum statistics. In one
embodiment, the following luma information is may be col-
lected by the 3A statistics collection logic 482:

sums

:sum of camY

sum

cond(Y,,.) :sum of cam that satisfies the condition:
Y, in <=cam¥ <Y,

Ycountl : count of pixels where camY <Y,

Ycount2 : count of pixels where camY >=Y,,

Here, Ycountl may represent the number of underexposed
pixels and Ycount2 may represent the number of overexposed
pixels. This may be used to determine whether the image is
overexposed or underexposed. For instance, if the pixels do
not saturate, the sum of camY (Y,,,,,) may indicate average
luma in a scene, which may be used to achieve a target AE
exposure. For instance, in one embodiment, the average luma
may be determined by dividing Y ,,,,, by the number of pixels.

Further, by knowing the luma/AFE statistics for tile statistics

US 9,105,078 B2

75

and window locations, AE metering may be performed. For
instance, depending on the image scene, it may be desirable to
weigh AF statistics at the center window more heavily than
those at the edges of the image, such as may be in the case of
a portrait.

In the presently illustrated embodiment, the 3A statistics
collection logic may be configured to collect statistics in tiles
and windows. In the illustrated configuration, one window
may be defined for tile statistics 863. The window may be
specified with a column start and width, and a row start and
height. In one embodiment, the window position and size may
be selected as a multiple of four pixels and, within this win-
dow, statistics are gathered in tiles of arbitrary sizes. By way
of' example, all tiles in the window may be selected such that
they have the same size. The tile size may be set indepen-
dently for horizontal and vertical directions and, in one
embodiment, the maximum limit on the number of horizontal
tiles may be set (e.g., a limit of 128 horizontal tiles). Further,
in one embodiment, the minimum tile size may be set to 8
pixels wide by 4 pixels high, for example. Below are some
examples of tile configurations based on different video/im-
aging modes and standards to obtain a window of 16x16 tiles:

VGA 640x480: the interval 40x30 pixels

HD 1280x720: the interval 80x45 pixels

HD 1920x1080: the interval 120x68 pixels

5 MP 2592x1944: the interval 162x122 pixels

8 MP 3280x2464: the interval 205x154 pixels

With regard to the present embodiment, from the eight
available pixel filters 824 (PF0-PF7), four may be selected for
tile statistics 863. For each tile, the following statistics may
collected:

(Rewom0s G s1m0s B s10m0) T (SRoinear siom0> SCtinear_sum0s SBiinear_sum0)> OF
(Rs10m0> SG 1m0 SB cim0) OF (Y im0 C1 ciim0> C2 gymo)> CountO

(Rewom1> G sum1s B cum1) T (8Riinear siom1> SCtinear_sum1s SBiinear_sum1)> OF
(R sam15 G ciam1> B com1) OF (Yarom1> C1 ciomt> C2 i), Countl

(Rewom2> G sum2s B c1m2) O (8Rinear siom2> SCtinear_sum2> SBiinear_sum2)> 0T
(Re1m2> SG ciom2> SB um2) OF (Y iz C1 gyimzs C2 i), Count2

(Rewom3> G sum3s B cim3) T (SRiinear ciom3> SGtinear_sum3s SBiinear_sum3)> OF
(R sam35 SG c1m3> SB com3) OF (Y3, C1 i3> C2 yime3), Count3, or

Y seom €O0A(Y g10)s Y conons1s Y couumer (from cam)

Inthe above-listed statistics, Count0-3 represents the count of
pixels that satisfy pixel conditions corresponding to the
selected four pixel filters. For example, if pixel filters PFO,
PF1, PF5, and PF6 are selected as the four pixel filters for a
particular tile or window, then the above-provided expres-
sions may correspond to the Count values and sums corre-
sponding to the pixel data (e.g., Bayer RGB, sRGB,,, ...
sRGB, YC1Y2, camYC1C2) which is selected for those fil-
ters. Additionally, the Count values may be used to normalize
the statistics (e.g., by dividing color sums by the correspond-
ing Count values). As shown, depending at least partially
upon the types of statistics needed, the selected pixels filters
may be configured to select between either one of Bayer
RGB, sRGB,,,.,» or sSRGB pixel data, or YC1C2 (non-linear
or camera color space conversion depending on selection by
logic) pixel data, and determine color sum statistics for the
selected pixel data. Additionally, as discussed above the luma
value, camY, from the camera color space conversion
(camYC1C2) is also collected for luma sum information for
auto-exposure (AE) statistics.

Additionally, the 3A statistics collection logic 482 may
also be configured to collect statistics 861 for multiple win-
dows. For instance, in one embodiment, up to eight floating
windows may be used, with any rectangular region having a
multiple of four pixels in each dimension (e.g., heightx

5

10

15

20

25

35

40

45

50

55

60

65

76

width), up to a maximum size corresponding to the size of the
image frame. However, the location of the windows is not
necessarily restricted to multiples of four pixels. For instance,
windows can overlap with one another.

In the present embodiment, four pixel filters may be
selected from the available eight pixel filters for each window.
Statistics for each window may be collected in the same
manner as for tiles, discussed above. Thus, for each window,
the following statistics 861 may be collected:

R0 G s1m0> B ciam0) T SRysnar caomo> SCiinear_sum0> SBiinear_samo)s OF
(8Rssim0s SG c10m0> B c1m0) OF (Y srm0s C1 c10m0> C2 coomo), CountO
(Resom1> G sum1s B cum1) T (SRiinear ciom1> SCtinear_sumi> SBiinear_sum1)> OF
(8Ryum1s SG siom1s SB com1) OF (Yeromt> C1 gimi> C2 Countl

cm2 G sum2> B cum2) OF SRopincar_cuomz> SOrinear_sum> SBiinear_sum2)s OF
(Reuim2: SG c1m2> B crom2) OF (Y sz C1 cigmz> C2 oomz), Count2
(Rewom3> G cum3s B cim3) T (SRiinear ciom3> SCtinear_sum3> SBiinear_sum3)> OF
(5Resim3s SG c1m3> SB com3) OF (Ysram3s C1 i3> C2 cuoma), Count3, or
Yoo €O0A(Y 010)s Y corinets Y cornez (from camy)

sum>

suml)s

In the above-listed statistics, Count0-3 represents the count of
pixels that satisfy pixel conditions corresponding to the
selected four pixel filters for a particular window. From the
eight available pixel filters, the four active pixel filters may be
selected independently for each window. Additionally, one of
the sets of statistics may be collected using pixel filters or the
camY luma statistics. The window statistics collected for
AWB and AE may, in one embodiment, be mapped to one or
more registers.

Referring still to FIG. 65, the 3 A statistics collection logic
482 may also be configured to acquire luma row sum statistics
859 for one window using the luma value, camY, for the
camera color space conversion. This information may be used
to detect and compensate for flicker. Flicker is generated by a
periodic variation in some fluorescent and incandescent light
sources, typically caused by the AC power signal. For
example, referring to FIG. 73, a graph illustrating how flicker
may be caused by variations in a light source is shown. Flicker
detection may thus be used to detect the frequency of the AC
power used for the light source (e.g., 50 Hz or 60 Hz). Once
the frequency is known, flicker may be avoided by setting the
image sensor’s integration time to an integer multiple of the
flicker period.

To detect for flicker, the camera luma, camY, is accumu-
lated over each row. Due to the down-sample of the incoming
Bayer data, each camY value may corresponds to 4 rows of
the original raw image data. Control logic and/or firmware
may then perform a frequency analysis of the row average or,
more reliably, of the row average differences over consecutive
frames to determine the frequency of the AC power associated
with a particular light source. For example, with respect to
FIG. 73, integration times for the image sensor may be based
ontimes t1, t2, t3, and t4 (e.g., such that integration occurs at
times corresponding to when a lighting source exhibiting
variations is generally at the same brightness level.

In one embodiment, a luma row sum window may be
specified and statistics 859 are reported for pixels within that
window. By way of example, for 1080p HD video capture,
assuming a window of 1024 pixel high, 256 luma row sums
are generated with 1-row resolution. Each accumulated value
may be expressed with up to 32 bits for 16-bit camY values,
for up to 1024 samples per row and up to 64 rows.

The 3 A statistics collection logic 146 of FIG. 65 may also
provide for the collection of auto-focus (AF) statistics 842 by
way of the auto-focus statistics logic 5841. A functional block
diagram showing embodiments of the AF statistics logic 5841
in more detail is provided in FIG. 74. As shown, the AF

US 9,105,078 B2

77

statistics logic 5841 may include a horizontal filter 5843 and
an edge detector 5844 which is applied to the original Bayer
RGB (not down-sampled), two 3x3 filters 5846 on Y from
Bayer, and two 3x3 filters 5847 on camY. In general, the
horizontal filter 5843 provides a fine resolution statistics per
color component, the 3x3 filters 5846 may provide fine reso-
Iution statistics on BayerY (Bayer RGB with 3x1 transform
(logic 5845) applied), and the 3x3 filters 5847 may provide
coarser two-dimensional statistics on camY (since camY is
obtained using down-scaled Bayer RGB data, i.e., logic
5815). Further, the logic 5841 may include logic 5852 for
decimating the Bayer RGB data (e.g., 2x2 averaging, 4x4
averaging, etc.), and the decimated Bayer RGB data 5853
may be filtered using 3x3 filters 5854 to produce a filtered
output 5855 for decimated Bayer RGB data. The present
embodiment provides for 16 windows of statistics. At the raw
frame boundaries, edge pixels are replicated for the filters of
the AF statistics logic 841. The various components of the AF
statistics logic 5841 are described in further detail below.

First, the horizontal edge detection process includes apply-
ing the horizontal filter 5843 for each color component (R, Gr,
Gb, B) followed by an optional edge detector 5844 on each
color component. Thus, depending on imaging conditions,
this configuration allows for the AF statistic logic 5841 to be
set up as a high pass filter with no edge detection (e.g., edge
detector disabled) or, alternatively, as a low pass filter fol-
lowed by an edge detector (e.g., edge detector enabled). For
instance, in low light conditions, the horizontal filter 5843
may be more susceptible to noise and, therefore, the logic
5841 may configure the horizontal filter as a low pass filter
followed by an enabled edge detector 5844. As shown, the
control signal 5848 may enable or disable the edge detector
5844. The statistics from the different color channels are used
to determine the direction of the focus to improve sharpness,
since the different colors may focus at different depth. In
particular, the AF statistics logic 5841 may provide for tech-
niques to enabling auto-focus control using a combination of
coarse and fine adjustments (e.g., to the focal length of the
lens). Embodiments of such techniques are described in addi-
tional detail below.

In one embodiment the horizontal filter may be a 7-tap
filter. The 7-tap horizontal filter may be followed by an
optional edge detector on Red, Green and Blue samples.
Thus, the AF statistics collection may be set up as a high pass
filter with no edge detection. Additionally or alternatively, it
can be set up as a low pass filter followed by an edge detector.
The statistics from the different color channels may be used to
determine the direction of the focus to improve sharpness,
since the different colors may focus at different depths. The
horizontal filter may be defined as follows:

out(i) = (af_horzfilt_coeff[0] *(in(i-3)+in(i+3)) +
af horzfilt coeff[1] *(in(i-2)+in(i+2)) +

af horzfilt coeff[2] *(in(i-1)+in(i+1)) +

af horzfilt coeff[3]*(in(i))
out(i) = max(-65535, min(65535, out(i)))

35

40

45

50

55

78

edge(i) = abs(-2%out(i-1) + 2*out(i+1)) + abs(—out(i-2) + out(i+2))
edge (i) = max(0, min(65535, edge (i)))

Thus, the edge detector 5844, when enabled, may output a
value based upon the two pixels on each side of the current
input pixel i. The result may be clipped to a 16-bit value
between 0 and 65535.

Depending on whether an edge is detected, the final output
of'the pixel filter (e.g., filter 5843 and detector 5844) may be
selected as either the output of the horizontal filter 5843 or the
output of the edge detector 5844. For instance, the output
5849 of the edge detector 5844 may be edge(i) if an edge is
detected, or may be the absolute value of the horizontal filter
output out(i) if no edge is detected. When operatingina 16-bit
mode, the final output of the pixel filter may be selected to be
either the output of the horizontal filter or the output of the
edge detector the 16-bit mode):

edge(i)=(aqf_horzfilt_edge_ en)?edge(7):abs(out(?))

In an 8-bit mode, the result is right shifted by 8 before
accumulation:

edge(i)=(edge(i)>>R)

For each window, the accumulated value edge_sum|[R,Gr,
Gb,B], can selected to be either: (1) the sum of edge(j,i) for
each pixel over the window, or (2) the maximum value of
edge(j) across a line in the window, max(edge), summed over
the lines in the window. The value of edge(j,i) is only accu-
mulated if it is above a programmable threshold. In 8-bit
mode, the number of bits required to store the maximum value
of edge_sum|[R,Gr,Gb,B] may be 30 bits, assuming a maxi-
mum AF window size 0f 4096x4096 (8 bit edge result, plus 22
bits AF window size). In 16-bit mode, the number of bits
required may be 38 bits, assuming a maximum AF window
size of 4096x4096 (with a 16-bit edge result, plus 22 bits for
AF window size). In this case, the 32 least significant bits
(LSBs) of the results are stored in one register, and the upper
6 most significant bits (MSBs) of the results are stored in a
second register.

As discussed, the 3x3 filters 5847 for camY luma may
include two programmable 3x3 filters, referred to as FO and
F1, which are applied to camY. The result of the filter 5847
goes to either a squared function or an absolute value func-
tion. The result is accumulated over a given AF window for
both 33 filters FO and F1 to generate a luma edge value. In
one embodiment, the luma edge values at each camY pixel are
defined as follows:

=FX * camY

=FX(0,0) * camY (j-1, i-1) + FX(0,1) * camY

(-1, i) + FX(0,2) * camY (j-1,i+1) + FX(1,0) * camY
(,1-1) + FX(1,1) * camY (j, i) + FX(1,2) * camY

(, i+1) + FX(2,0) * camY (j+1, i-1) + FX(2,1) *
camY (j+1,1) + FX(2,2) * camY (j+1, i+1)

= f(max(-65535, min(65535, edgecamY_FX(j,i))))

= aAg orabs(a) for16-bit mode, or

=(a 2)>>16 or (abs(a)>>8) for 8-bit mode

edgecamY_FX(j,i)

edgecamY_FX(j,i)
fa)
fla)

Here, each coefficient af_horzfilt_coeff [0:3] may be in the
range [-2, 2], and i represents the input pixel index for R, Gr,
Gb or B. The filtered output out(i) may be clipped between a
minimum and maximum value of —255 and 255, respectively.
The filter coefficients may be defined independently per color
component.

The optional edge detector 5844 may follow the output of
the horizontal filter 5843. In one embodiment, the edge detec-
tor 5844 may be defined as:

60

where FX represents the 3x3 programmable filters, FO and
F1, with signed coefficients in the range [-4, 4]. The indices
j and i represent pixel locations in the camY image. As dis-
cussed above, the filter on camY may provide coarse resolu-
tion statistics, since camY is derived using down-scaled (e.g.,
4x4 to 1) Bayer RGB data. For instance, in one embodiment,
the filters FO and F1 may be set using a Scharr operator, which
offers improved rotational symmetry over a Sobel operator,
an example of which is shown below:

US 9,105,078 B2

79
-3 0 3
FO=|-10 0 10]
-3 0 3
-3 -10 -3
Fl={0 0 0]
3 10 3

For each window, the accumulated values 5850 determined
by the filters 5847, edgecamY_FX_sum (where FX=F0 and
F1), can selected to be either (1) the sum of edgecamY_FX
(j,1) for each pixel over the window, or (2) the maximum value
of edgecamY_FX(j) across a line in the window, summed
over the lines in the window. In one embodiment, edge-
camY_FX_sum may saturate to a 32-bit value when f(a) is set
to a"2 to provide “peakier” statistics with a finer resolution. To
avoid saturation, a maximum window size X*Y in raw frame
pixels may be set such that it does not exceed a total of
1024x1024 pixels (e.g., i.e. X*Y<=1048576 pixels, with 16
bits per pixel plus 16 bits for AF window size). As noted
above, f(a) may also be set as an absolute value to provide
more linear statistics. In 16-bit mode, the number of bits
required may be 52 bits, when a maximum AF window size of
4096x4096 (32 bits per pixel, plus 20 bits for AF window
size) is used. For such a case, the 32 least significant bits
(LSBs) of the results are stored in one register, and the upper
20 most significant bits (MSBs) of the results are stored in
another register.

The AF 3x3 filters 846 on Bayer Y may defined in a similar
manner as the 3x3 filters in camY, but they are applied to luma
values Y generated from a Bayer quad (2x2 pixels). First,
8-bit Bayer RGB values are converted to Y with program-
mable coefficients in the range [0, 4] to generate a white
balanced Y value, as shown below. The AF 3x3 filters on'Y
from Bayer are defined in a similar manner as the 3x3 filters
in camY, but they are applied to Luma values Y generated
from a Bayer quad (2x2 pixels). First, 16-bit Bayer RGB
values are transformed to Y with programmable coefficients
in the range [0, 4) to generate a white balanced Y:

bayerY=max(0,min(65535 bayer¥ Coeff [0/*R+
bayerY Coeff [11*(Gr+Gb)/2+bayerY_
Coeff [2]%B))

Like the filters 5847 for camY, the 3x3 filters 5846 for
bayerY luma may include two programmable 3x3 filters,
referred to as FO and F1, which are applied to bayerY. The
result of the filter 5846 goes to either a squared function or an
absolute value function. The result is accumulated over a
given AF window for both 3x3 filters FO and F1 to generate a
luma edge value. In one embodiment, the luma edge values at
each bayerY pixel are defined as follows:

edgebayerY_FX(j,i) =FX* bayerY
= FX(0,0) * bayerY (j-1,i-1) + FX(0,1) * bayerY (j-1, i) + FX(0,2) *
bayerY (j-1, i) + FX(1,0) * bayerY (j, i-1) + FX(1,1) * bayerY
(j, 1) + FX(1,2) * bayerY (j-1, i) + FX(2,0) * bayerY (j+1,i-1) +
FX(2,1) * bayerY (j+1, i) + FX(2,2) * bayerY (j+1,1)
edgebayerY_FX(j,i) = flmax(-65535, min(65535, edgebayerY_FX(,i))))
fla) = aﬁg or abs(a) for 16-bit mode, or
fla) = (a 2)>>16 or (abs(a)>>8) for 8-bit mode

where FX represents the 3x3 programmable filters, FO and
F1, with signed coefficients in the range [-4, 4]. The indices
j and 1 represent pixel locations in the bayerY image. As
discussed above, the filter on Bayer Y may provide fine reso-
Iution statistics, since the Bayer RGB signal received by the

10

15

20

25

30

35

40

45

50

55

60

65

80

AF logic 5841 is not decimated. By way of examples only, the
filters FO and F1 of'the filter logic 846 may be set using one of
the following filter configurations:

-1 -1 -1
-1 8 —1]

-1 -1

For each window, the accumulated values 5851 determined
by the filters 5846, edgebayerY_FX_sum (where FX=F0 and
F1), can selected to be either (1) the sum of edgebayerY_FX
(j,1) for each pixel over the window, or (2) the maximum value
of edgebayerY_FX(j) across a line in the window, summed
over the lines in the window. In 8-bit mode, edgebayerY _
FX_sum may saturate to 32-bits when f(a) is set to a"2. Thus,
to avoid saturation, the maximum window size X*Y in raw
frame pixels should be set such that it does not exceed a total
of'512x512 pixels (e.g., X*¥Y<=262144, with 16 bits per pixel
plus 16 bits for the AF window size). As discussed above,
setting f(a) to a"2 may provide for peakier statistics, while
setting f(a) to abs(a) may provide for more linear statistics. In
16-bit mode, the number of bits required may be 54 bits,
assuming a maximum AF window size of 4096x4096, with
32 bits per pixel, plus 22 bits for AF window size. For such a
case, the 32 least significant bits (LSBs) of the results are
stored in one register, and the upper 22 most significant bits
(MSBs) of the results are stored in a second register.

As discussed above, statistics 5842 for AF are collected for
16 windows. The windows may be any rectangular area with
each dimension being a multiple of 4 pixels. Because each
filtering logic 5846 and 5847 includes two filters, in some
instances, one filter may be used for normalization over 4
pixels, and may be configured to filter in both vertical and
horizontal directions. Further, in some embodiments, the AF
logic 5841 may normalize the AF statistics by brightness.
This may be accomplished by setting one or more of the filters
of'the logic blocks 5846 and 5847 as bypass filters. In certain
embodiments, the location of the windows may be restricted
to multiple of 4 pixels, and windows are permitted to overlap.
For instance, one window may be used to acquire normaliza-
tion values, while another window may be used for additional
statistics, such as variance, as discussed below. In one
embodiment, the AF filters (e.g., 5843, 5846, 5847) may not
implement pixel replication at the edge of an image frame
and, therefore, in order for the AF filters to use all valid pixels,
the AF windows may be set such that they are each at least 4
pixels from the top edge of the frame, at least 8 pixels from the
bottom edge of the frame and at least 12 pixels from the
left/right edge of the frame. In 8-bit mode, the following
statistics may be collected and reported for each window:

32-bit edgeGr_sum for Gr

32-bit edgeR_sum for R

32-bit edgeB_sum for B

32-bit edgeGb_sum for Gb

32-bit edgebayerY_FO_sum for Y from Bayer for filter0 (FO)

US 9,105,078 B2

81

-continued

32-bit edgebayerY_F1_sum for Y from Bayer for filterl (F1)
32-bit edgecamY_FO_sum for camY for filter0 (FO)
32-bit edgecamY_F1_sum for camY for filterl (F1)

In such embodiments, the memory required for storing the AF
statistics 5842 may be 16 (windows) multiplied by 8 (Gr, R,
B, Gb, bayerY_FO, bayerY_F1, camY_FO0, camY_F1) mul-
tiplied by 32 bits.

In 16-bit mode, the following statistics may be collected
and reported per window:

38-bit edgeGr_sum for Gr

38-bit edgeR_sum for R

38-bit edgeB_sum for B

38-bit edgeGb_sum for Gb

52-bit edgebayerY_FO_sum for Y from Bayer for filterO
52-bit edgebayerY_F1_sum forY from Bayer for filterl
54-bit edgecamY_FO_sum for cam for filter0

54-bit edgecamY_F1_sum for cam for filterl

The number of elements may include 16 (windows)x8 (Gr,
R, B, Gb, bayerY_FO, bayerY_F1, camY_FO, camY_F1)x64
bits (1024 bytes). The most significant bits (MSBs) may be
stored in one register and the remaining least significant bits
(LSBs) may be stored in a second register. In addition to the
output of the filter, the input pixel and the input pixel squared
may also be reported for each of the 16 AF windows. This may
be used, for example, to normalize the AF score.

Thus, in one embodiment, the accumulated value per win-
dow may be selected between: the output of the filter (which
may be configured as a default setting), the input pixel, or the
input pixel squared. The selection may be made for each of
the 16 AF windows, and may apply to all of the 8 AF statistics
(listed above) in a given window. This may be used to nor-
malize the AF score between two overlapping windows, one
of which is configured to collect the output of the filter and
one of which is configured to collect the input pixel sum.
Additionally, for calculating pixel variance in the case of two
overlapping windows, one window may be configured to
collect the input pixel sum, and another to collect the input
pixel squared sum, thus providing for a variance that may be
calculated as:

Variance=(avg_pixel?)—(avg_pixel)2

Using the AF statistics, the ISP control logic 84 (FIG. 7)
may be configured to adjust a focal length of the lens of an
image device (e.g., 30) using a series of focal length adjust-
ments based on coarse and fine auto-focus “scores” to bring
an image into focus. As discussed above, the 3x3 filters 5847
for camY may provide for coarse statistics, while the hori-
zontal filter 5843 and edge detector 5844 may provide for
comparatively finer statistics per color component, while the
33 filters 5846 on BayerY may provide for fine statistics on
BayerY. Further, the 3x3 filters 5854 on a decimated Bayer
RGB signal 853 may provide coarse statistics for each color
channel. As discussed further below, AF scores may be cal-
culated based on filter output values for a particular input
signal (e.g., sum of filter outputs FO and F1 for camY, BayerY,
Bayer RGB decimated, or based on horizontal/edge detector
outputs, etc.).

FIG. 75 shows a graph 5857 that depicts curves 5858 and
5860 which represent coarse and fine AF scores, respectively.
As shown, the coarse AF scores based upon the coarse statis-
tics may have a more linear response across the focal distance
of'the lens. Thus, at any focal position, a lens movement may

10

15

20

30

40

45

50

55

82

generate a change in an auto focus score which may be used
to detect if the image is becoming more in focus or out of
focus. For instance, an increase in a coarse AF score after a
lens adjustment may indicate that the focal length is being
adjusted in the correct direction (e.g., towards the optical
focal position).

However, as the optical focal position is approached, the
change in the coarse AF score for smaller lens adjustments
steps may decrease, making it difficult to discern the correct
direction of focal adjustment. For example, as shown on
graph 857, the change in coarse AF score between coarse
position (CP)CP1 and CP2 is represented by A.,,, which
shows an increase in the coarse from CP1 to CP2. However, as
shown, from CP3 to CP4, the change A 34 in the coarse AF
score (which passes through the optimal focal position
(OFP)), though still increasing, is relatively smaller. It should
be understood that the positions CP1-CP6 along the focal
length L. are not meant to necessarily correspond to the step
sizes taken by the auto-focus logic along the focal length.
That is, there may be additional steps taken between each
coarse position that are not shown. The illustrated positions
CP1-CP6 are only meant to show how the change in the
coarse AF score may gradually decrease as the focal position
approaches the OFP.

Once the approximate position of the OFP is determined
(e.g., based on the coarse AF scores shown in FIG. 75, the
approximate position of the OFP may be between CP3 and
CPS5), fine AF score values, represented by curve 860 may be
evaluated to refine the focal position. For instance, fine AF
scores may be flatter when the image is out of focus, so that a
large lens positional change does not cause a large change in
the fine AF score. However, as the focal position approaches
the optical focal position (OFP), the fine AF score may
change sharply with small positional adjustments. Thus, by
locating a peak or apex 862 on the fine AF score curve 860, the
OFP may be determined for the current image scene. Thus, to
summarize, coarse AF scores may be used to determine the
general vicinity of the optical focal position, while the fine AF
scores may be used to pinpoints a more exact position within
that vicinity.

In one embodiment, the auto-focus process may begin by
acquiring coarse AF scores along the entire available focal
length, beginning at position 0 and ending at position L
(shown on graph 857) and determine the coarse AF scores at
various step positions (e.g., CP1-CP6). In one embodiment,
once the focal position of the lens has reached position L, the
position may reset to 0 before evaluating AF scores at various
focal positions. For instance, this may be due to coil settling
time of a mechanical element controlling the focal position.
In this embodiment, after resetting to position 0, the focal
position may be adjusted toward position L to a position that
first indicated a negative change in a coarse AF score, here
position CP5 exhibiting a negative change A, with respect
to position CP4. From position CPS5, the focal position may be
adjusted in smaller increments relative to increments used in
the coarse AF score adjustments (e.g., positions FP1, FP2,
FP3, etc.) back in the direction towards position 0, while
searching for a peak 862 in the fine AF score curve 860. As
discussed above, the focal position OFP corresponding to the
peak 862 in the fine AF score curve 860 may be the optimal
focal position for the current image scene.

As may be appreciated, the techniques described above for
locating the optimal area and optimal position for focus may
be referred to as “hill climbing,” in the sense that the changes
in the curves for the AF scores 858 and 860 are analyzed to
locate the OFP. Further, while the analysis of the coarse AF
scores (curve 858) and the fine AF scores (curve 860) is

US 9,105,078 B2

83

shown as using same-sized steps for coarse score analysis
(e.g., distance between CP1 and CP2) and same-sized steps
for fine score analysis (e.g., distance between FP1 and FP2),
in some embodiments, the step sizes may be varied depending
on the change in the score from one position to the next. For
instance, in one embodiment, the step size between CP3 and
CP4 may be reduced relative to the step size between CP1 and
CP2 since the overall delta in the coarse AF score (A.s,) is
less then the delta from CP1 to CP2 (A.;,).

A method 864 depicting this process is illustrated in FIG.
76. Beginning at block 865, a coarse AF score is determined
for image data at various steps along the focal length, from
position 0 to position L (FIG. 75). Thereafter, at block 866,
the coarse AF scores are analyzed and the coarse position
exhibiting the first negative change in the coarse AF score is
identified as a starting point for fine AF scoring analysis. For
instance, subsequently, at block 867, the focal position is
stepped back towards the initial position 0 at smaller steps,
with the fine AF score at each step being analyzed until a peak
in the AF score curve (e.g., curve 860 of FIG. 75) is located.
At block 868, the focal position corresponding to the peak is
set as the optimal focal position for the current image scene.

As discussed above, due to mechanical coil settling times,
the embodiment of the technique shown in FIG. 76 may be
adapted to acquire coarse AF scores along the entire focal
length initially, rather than analyzing each coarse position one
by one and searching for an optimal focus area. Other
embodiments, however, in which coil settling times are less of
a concern, may analyze coarse AF scores one by one at each
step, instead of searching the entire focal length.

In certain embodiments, the AF scores may be determined
using white balanced luma values derived from Bayer RGB
data. For instance, the luma value, Y, may be derived by
decimating a 2x2 Bayer quad by a factor of 2, as shown in
FIG. 77, or by decimating a 4x4 pixel block consisting of four
2x2 Bayer quads by a factor of 4, as shown in FIG. 78. In one
embodiment, AF scores may be determined using gradients.
In another embodiment, AF scores may be determined by
applying a 3x3 transform using a Scharr operator, which
provides rotational symmetry while minimizing weighted
mean squared angular errors in the Fourier domain. By way of
example, the calculation of a coarse AF score on camY using
acommon Scharr operator (discussed above) is shown below:

30 3 -3 10 -3
AFScoregparse = f|| =10 0 10 |xin|+ f|| O 0 0 [xin|,
-3 0 3 3 10 3

where in represents the decimated luma Y value. In other
embodiments, the AF score for both coarse and fine statistics
may be calculated using other 3x3 transforms.

Auto focus adjustments may also be performed differently
depending on the color components, since different wave-
lengths of light may be affected differently by the lens, which
is one reason the horizontal filter 843 is applied to each color
component independently. Thus, auto-focus may still be per-
formed even in the present of chromatic aberration in the lens.
For instance, because red and blue typically focuses at a
different position or distance with respect to green when
chromatic aberrations are present, relative AF scores for each
color may be used to determine the direction to focus. This is
better illustrated in FIG. 79, which shows the optimal focal
position for blue, red, and green color channels for a lens 870.
As shown, the optimal focal positions for red, green, and blue
are depicted by reference letters R, G, and B respectively,

10

15

20

25

30

35

40

45

50

55

60

65

84

each corresponding to an AF score, with a current focal posi-
tion 872. Generally, in such a configuration, it may be desir-
able to select the optimal focus position as the position cor-
responding to the optimal focal position for green
components (e.g., since Bayer RGB has twice as many green
as red or blue components), here position G. Thus, it may be
expected that for an optimal focal position, the green channel
should exhibit the highest auto-focus score. Thus, based on
the positions of the optimal focal positions for each color
(with those closerto the lens having higher AF scores), the AF
logic 5841 and associated control logic 84 may determine
which direction to focus based on the relative AF scores for
blue, green, and red. For instance, if the blue channel has a
higher AF score relative to the green channel (as shown in
FIG. 79), then the focal position is adjusted in the negative
direction (towards the image sensor) without having to first
analyze in the positive direction from the current position
872. In some embodiments, illuminant detection or analysis
using color correlated temperatures (CCT) may be per-
formed.

Further, as mentioned above, variance scores may also be
used. For instance, pixel sums and pixel squared sum values
may be accumulated for block sizes (e.g., 8x8-32x32 pixels),
and may be used to derive variance scores (e.g., avg_pixel?)-
(avg_pixel)"2). The variances may be summed to get a total
variance score for each window. Smaller block sizes may be
used to obtain fine variance scores, and larger block sizes may
be used to obtain coarser variance scores.

Referring to the 3 A statistics collection logic 482 of FIG.
65, the logic 146 may also be configured to collect component
histograms 874 and 876. As may be appreciated, histograms
may be used to analyze the pixel level distribution in an
image. This may be useful for implementing certain func-
tions, such as histogram equalization, where the histogram
data is used to determine the histogram specification (histo-
gram matching). By way of example, luma histograms may
be used for AE (e.g., for adjusting/setting sensor integration
times), and color histograms may be used for AWB. To pro-
vide a few examples, histograms may be 256, 128, 64 or 32
bins (where the top 8, 7, 6, and 5 bits of the pixel is used to
determine the bin, respectively) for each color component, as
specified by a bin size (BinSize).

A scale factor and offset may be applied to determine what
range of the pixel data is collected. For example, the bin
number may be obtained as follows:

idx=(hist_scale*(pixel-hist_offset))>>16.

In the equation above, hist_scale may represent a 17-bit
unsigned number. Values of hist_scale that may be allowed
may fall in the range 0 to 216, to represent a floating point
scale between 0 and 1.0. The color histogram bins are incre-
mented only if the bin indices are in the range [0, 255]:

if (idx >= 0 && idx < 256)
StatsHist[idx] += Count.

Inthe present example, the statistics logic 140 may include
two histogram units. This first histogram 874 (Hist0) may be
configured to collect pixel data as part of the statistics collec-
tion after the 4x4 decimation in the 3A statistics logic 482.
For Hist0, the components may be selected to be RGB, sRG-
Biears SRGB or YC1C2 using selection circuit 880. Keeping
in mind FIG. 48 while considering FIG. 68, the second his-
togram 876 (Histl) shown in FIG. 68 may be configured to
collect pixel data before the statistics pipeline, as generally
illustrated by the histogram logic 486 of FIG. 48. Since the

US 9,105,078 B2

85

input to the statistics logic 140 can be negative, since the input
interface may be signed 17-bit, the histogram data may be
collected only for positive pixels. The raw Bayer RGB data
(output from 146) may be decimated (to produce signal 878)
using logic 882 by skipping pixels, as discussed further
below. For the green channel, the color may be selected
between Gr, Gb or both Gr and Gb (both Gr and Gb counts are
accumulated in the Green bins).

In order to keep the histogram bin width the same between
the two histograms, Hist1 may be configured to collect pixel
data every 4 pixels (every other Bayer quad). The start of the
histogram window determines the first Bayer quad location
where the histogram starts accumulating. Starting at this loca-
tion, every other Bayer quad is skipped horizontally and
vertically for Histl. The window start location can be any
pixel position for Hist1 and, therefore pixels being skipped by
the histogram calculation can be selected by changing the
start window location. Hist] can be used to collect data close
to the black level to assist in dynamic black level compensa-
tion (BLC) logic 472. For Hist0, bins may be 20 bits. For
Histl, bins may be 22 bits. This allows for a maximum picture
size of 4096 by 3120 (12 MP). The internal memory size to
accommodate such sizes may be 3x256x20 bits for Hist0 (3
color components, 256 bins), and 4x256x22 bits for Histl (4
color components, 256 bins).

With regard to memory format, statistics for AWB/AE
windows, AF windows, 2D color histogram, and component
histograms may be mapped to registers to allow early access
by firmware. In one embodiment, two memory pointers may
be used to write statistics to memory, one for tile statistics
863, and one for luma row sums 859, followed by all other
collected statistics. All statistics are written to external
memory, which may be DMA memory. The memory address
registers may be double-buffered so that a new location in
memory can be specified on every frame. In addition, many
statistics collected in 16-bit mode may take up two 32-bit
registers (which respectively may be double-buffered) to
accommodate statistics of up to 64 bits (e.g., a 40-bit statistics
measurement with the first 32 bits taking up the first register
and the remaining 8 bits taking up the 8 most significant bits
of the second register).

Fixed Pattern Noise Statistics

Referring back to FIG. 48, the output of the DPR logic 474
may also be input into the fixed pattern noise (FPN) statistics
collection logic 484, which may be used to calculate fixed
pattern noise statistics regarding the interim image data out-
put by the DPR block 474. The fixed pattern noise statistics
may include statistics related to fixed pattern noise that may
exist on the sensors 90. Fixed pattern noise (FPN) is typically
due to variations in pixel or column properties that manifest
as spatial noise. For example, variations in pixel-offset values
may result from variations in dark current or in offsets of an
amplifier chain coupled to the sensors 90.

In general, fixed pattern noise may include noise in the
sensors 90 that has a repeating or fixed pattern. For example,
the fixed pattern noise may include row-wise or column-wise
fixed variations that may be removed such that higher quality
images can be displayed. In another example, fixed pattern
noise may be a diagonal fixed variation that occurs due to a
manufacturing process such as a laser annealing process that
creates a different amount of light going to the pixels, which
may result in a noise that has a pattern. Thus, the fixed pattern
noise may be a row-wise, column-wise, or diagonal-wise
pattern. Alternatively, the fixed pattern noise may be a whole
frame pattern that changes pixel-to-pixel but remains similar
from frame-to-frame.

10

15

20

25

30

35

40

45

50

55

60

65

86

Typically, during the manufacturing process, a calibration
procedure may determine the fixed pattern noise, which may
be used to remove the fixed pattern noise. However, the fixed
pattern noise may change over time due to temperature, inte-
gration time, etc. In this manner, the fixed pattern noise sta-
tistics determined by the FPN statistics collection logic 484
may be used to adapt the fixed pattern noise removal process
on the fly as the fixed pattern noise changes. In addition to the
aiding the fixed pattern noise removal process, the fixed pat-
tern noise statistics may be used to estimate a signal-to-noise
(SNR) ratio or determine various noise filtering configura-
tions such as filtering strength, filtering coefficients, and the
like.

In one embodiment, the FPN statistics collection logic 484
may determine the fixed pattern noise statistics by accumu-
lating pixel values across an axis (e.g., horizontal, vertical,
diagonal) of'image data, thereby capturinga 1-D projection of
the image data received by the sensors 90. The 1-D projection
may later be processed down the ISP pipeline to determine the
fixed pattern noise of image data and to provide parameters
that may be used to cancel out the fixed pattern noise from the
image data. In addition to determining the fixed pattern noise
of image data, the FPN statistics collection logic 484 may
identify any type of pattern displayed in the image data such
as, for example, bar codes. The process for determining the
fixed pattern noise statistics is described below with reference
to FIG. 80.

At block 902, the FPN statistics collection logic 484 may
receive an orientation for fixed noise statistics accumulation.
The orientation for the fixed noise statistics accumulation
may include a horizontal axis (i.e., row-wise), a vertical axis
(i.e., column-wise), and/or any angular axis (i.e., diagonal-
wise). In one embodiment, the orientation for the fixed noise
statistics accumulation may be specified using control param-
eters stepX and stepY. Control parameter stepX may denote a
value of a horizontal pixel coordinate increment from a
respective pixel location. Likewise, control parameter stepY
may denote a value of a vertical pixel coordinate increment
from the respective pixel location. The FPN statistics collec-
tion logic 484 may program the stepX and stepY parameters
based on the orientation of the fixed noise statistics accumu-
lation received at block 902. For example, stepX=1 and
stepY=0 may indicate column accumulation, whereas
stepX=0 and stepY=1 may indicate a row accumulation.

Diagonal accumulation (i.e., angular orientation) may use
stepX and stepY parameters that may correspond to fractional
values. In one embodiment, control parameters stepX and
stepY may be defined for each color component: Gr, R, B, and
Gb. An example of a diagonal accumulation is illustrated FIG.
82A, which include a diagonal accumulation 930 that has a
fractional stepX of 30/40 and a fractional stepY of 14/24.

At block 904, the FPN statistics collection logic 484 may
determine the color component (¢) and position (pos) for each
pixel in the orientation specified at block 902. The color
component (c) and position (pos) may be used as an index
value into a sum array that corresponds to the accumulated
pixel values along the specified orientation (i.e., fixed pattern
noise statistics). In one embodiment, the color component (c)
and the position (pos) of a respective pixel (p(j,i)) located at
(j,1) may be determined based on the orientation specified at
block 902 (i.e., stepX, stepY) and a size of the repeating fixed
pattern noise (i.e., fpn_size[c)) as shown below:

c=current color component, 0-3

pos=(floor(pos_init[c]+stepX/c] *i+stepY/c/*/)modulo
fon_size[c])

US 9,105,078 B2

87

where pos_init may indicate an initial position in the sum
array for a first pixel of the active region with respect to color
component Gr, R, B, or Gb, and fpn_size may indicate a size
of'arepeating pattern in the sum array with respect to the color
component Gr, R, B, or Gb. As such, each color component
may have its own sum array indexing.

At block 906, the FPN statistics collection logic 484 may
add a pixel value of each pixel having the same color com-
ponent in the specified orientation into a sum array. In this
manner, the FPN statistics collection logic 484 may generate
a sum array for each color component. In one embodiment,
the sum array may be generated with respect to a particular
color component that may be specified to the FPN statistics
collection logic 484. The sum array may then be computed
according to:

sum|[c][pos]+=color__enfc]?p(j,i):0

where color_en[c] indicates whether the fixed pattern statis-
tics is enabled for a particular color component.

At block 908, the FPN statistics collection logic 484 may
determine whether the fixed pattern noise statistics are color-
dependent or color-independent fixed pattern noise statistics.
In one embodiment, whether the fixed pattern noise statistics
are color-dependent or color-independent fixed pattern noise
statistics may be specified to the FPN statistics collection
logic 484 prior to performing the process 900. If the fixed
pattern noise statistics are color-dependent fixed pattern noise
statistics, the FPN statistics collection logic 484 may proceed
to block 910.

At block 910, the FPN statistics collection logic 484 may
store the fixed pattern noise statistics for each color compo-
nent determined at block 906 in the memory 100. For color-
dependent fixed pattern noise statistics, the FPN statistics
collection logic 484 may store the fixed pattern noise statistics
in the memory 100 in an order based on the color component
of the first pixel value in the corresponding sum array as
follows:

First Pixel Color

Component Sum([0] Sum([1] Sum(2] Sum([3]
0 Gr R B Gb
1 R Gr Gb B
2 B Gb Gr R
3 Gb B R Gr

The output order of the memory 100 for the sum arrays may

be:
sum[0][0:fpn_size[0]-1],sum[1][0:fpr_size[1]-1],
sum[2][0:fpn_size[2]-1],sum[3][0:/pr_
size[3]-1]

where the maximum fpn_size when determining color-de-
pendent fixed pattern noise statistics may be 2048.

Referring back to block 908, if the fixed pattern noise
statistics are color-independent fixed pattern noise statistics,
the FPN statistics collection logic 484 may proceed to block
912. Atblock 912, the FPN statistics collection logic 484 may
combine the sum arrays for each color component to deter-
mine the fixed pattern noise statistics for the sensors 90. In
one embodiment, the FPN statistics collection logic 484 may
determine the sum array indices for each color component
based on the parameter pos_init[c], stepX|c], stepY]c], and
fpn_size[c] for one particular color component. The maxi-
mum fpn_size when determining color-independent fixed
pattern noise statistics may be 4096, which may be based on
a size of a buffer memory available to perform the process
900.

10

15

20

30

35

40

45

50

55

60

88

After determining the fixed pattern noise statistics, at block
914, the FPN statistics collection logic 484 may store the
fixed pattern noise statistics in the memory 100. In one
embodiment, the FPN statistics collection logic 484 may
periodically perform the process 900 to identify fixed pattern
noise that may be generated as the sensors 90 ages. In another
embodiment, the FPN statistics collection logic 484 may
perform the process 900 over multiple frames such that the
orientation of the of the fixed pattern noise accumulation
changes for each frame. For example, if the orientation is
specified as a column-wise orientation, the FPN statistics
collection logic 484 may first perform the process 900 on one
frame of the image data with variables stepX and stepY
defined as 0 and 1, respectively. The FPN statistics collection
logic 484 may then perform the process 900 on the next frame
of'the image data with variables stepX and stepY altered such
that the orientation becomes an angled orientation. The FPN
statistics collection logic 484 may then continue altering its
orientation for each frame ofthe image data such that the FPN
statistics collection logic 484 may collect fixed pattern noise
statistics at different angles of the image data to identify fixed
pattern noise that may be present along various axes of the
image data.

In one embodiment, the FPN statistics collection logic 484
may divide the received image data into multiple horizontal
strips of the image such that each strip is of equal height. The
FPN statistics collection logic 484 may then determine the
FPN statistics for each horizontal strip independent of each
other. By collecting FPN statistics for each horizontal strip of
the image, it may be easier to distinguish image edges from
the fixed pattern noise. Additionally, a correlation or another
analysis process between the FPN statistics for each horizon-
tal strip may be used to find a true fixed pattern noise. Keeping
this in mind, FIG. 81 illustrates a process 920 that may be
used to determine FPN statistics for multiple horizontal strips
of'the input image. Although process 920 describes a method
for determining FPN statistics for multiple horizontal strips
of the input image, it should be noted that in other embodi-
ments, the process 920 may be performed with respect to
multiple vertical strips of the input image.

At block 922, the FPN statistics collection logic 484 may
divide the input image into multiple horizontal strips of equal
height. At block 924, the FPN statistics collection logic 484
may calculate fixed pattern noise statistics for each horizontal
strip of the input image. In one embodiment, the FPN statis-
tics collection logic 484 may perform the process 900
described above with respect to FIG. 80 for each horizontal
strip of the input image. As such, the FPN statistics collection
logic 484 may determine a sum array that includes an accu-
mulation of pixel values that correspond to a specified orien-
tation (block 902) in a respective horizontal strip of the input
image.

In another embodiment, at block 924, the FPN statistics
collection logic 484 may determine the FPN statistics for
every column in each horizontal strip of the input image.
When determining the FPN statistics for every column in a
horizontal strip of the input image (column sum), the FPN
statistics collection logic 484 may ignore the values of param-
eters: pos_init, stepX, stepY and fpn_size. Instead, the FPN
statistics collection logic 484 may add the pixel values in each
column of the horizontal strip of the input image to a sum
array. Once a pixel value on a last active line of the horizontal
strip has been accumulated into the sum array, at block 926,
the corresponding sum array may be stored in the memory
100. An example of a column sum accumulation according to
the process 920 is illustrated in FIG. 82B.

US 9,105,078 B2

89

In yet another embodiment, the FPN statistics collection
logic 484 may determine the FPN statistics for every row in
each horizontal strip of the input image. When determining
the FPN statistics for every row in a horizontal strip of the
inputimage (row sum), the FPN statistics collection logic 484
may ignore the values of parameters: pos_init, stepY and
fpn_size. Instead, the FPN statistics collection logic 484 may
set parameter, stepX, such that each row of the horizontal strip
of the input image may be divided into multiple segments of
pixels. The FPN statistics collection logic 484 may then sum
the pixel values within a segment into one bin (O<stepX<1).

Once the pixel values in a segment have been accumulated,
the FPN statistics collection logic 484 may add the accumu-
lated pixel values of each segment in a horizontal strip to a
sum array. When determining the sum array for eachrow in a
horizontal strip, the FPN statistics collection logic 484 may
use a specified stepX value that corresponds to one particular
color component (e.g., stepX[0]). As such, the FPN statistics
collection logic 484 may ignore the values for stepX that may
have been specified for other color components (e.g., stepX
[1:3]). An example of a row sum accumulation according to
the process 920 is illustrated in FIG. 82C.

At block 926, the FPN statistics collection logic 484 may
store the corresponding sum array for each horizontal strip in
the memory 100.

In one embodiment, when determining the FPN statistics
for every column or row in each horizontal strip of the input
image, the FPN statistics collection logic 484 may not allow
for a repeating pattern due to the horizontal strips. As such,
the FPN statistics collection logic 484 may store a sum array
before the FPN statistics have been accumulated for a hori-
zontal strip. Therefore, the number of active lines inside a
horizontal strip may correspond to a height of the horizontal
strip such that the FPN statistics collection logic 484 may not
skip any lines of pixels while determining the sum array.

As will be appreciated, when storing the FPN statistics for
every column in each horizontal strip of the input image in the
memory 100 at block 926, the FPN statistics collection logic
484 may store the corresponding sum arrays according to the
following output order:

sum[0][0],sum[1][0],sum[0][1],sum[1][1], ... ,sum[0]
[width/2-1],sum[1][active_region_ width/2-1],

sum[2][0],sum[3][0],sum[2][1],sum[3][1], . . . ,sum[2]
[width/2-1],sum[3][active_region_width/2-1]
where width corresponds to a width of the input image and
where active_region_width corresponds to a width of the
active region of the input image.

Further, when storing the FPN statistics for every row in
each horizontal strip of the input image in the memory 100 at
block 926, the FPN statistics collection logic 484 may store
the corresponding sum arrays according to the following
output order:

Even rows: sum[0][0],sum[1][0],sum[0][1],
sum[1][1], ... sum[0//N-1],sum[1]/N-1]

Odd rows: sum[2][0],sum[3][0],sum[2][1],
sum([3][1], .. . ,sum[2//N-1],sum[3]/N~1]
where N=floor(stepX[0]*(active_region_width—-1))+1 is the
number of bins in a row for each enabled (i.e., specified) color
component.

In one embodiment, the FPN statistics collection logic 484
may perform the process 920 over for each horizontal strip of
the input image such that the orientation of the of the fixed
pattern noise accumulation changes for each horizontal strip.

20

25

30

35

40

45

50

55

60

90

After determining the FPN statistics, the FPN statistics
collection logic 484 may not count a number of pixels accu-
mulated in each sum array. Instead, additional processing
components may derive the pixel count based on the accumu-
lation orientation and the size of any repeating pattern. For
instance, the additional processing components may find the
orientation of the fixed pattern noise and the size of any
repeating fixed pattern noise by changing step size(s) (i.e.,
stepX/stepY) and repeating pattern size parameters during
multiple frames of the fixed pattern noise statistics collection
process. In one embodiment, the repeating pattern size
parameter may be used when accumulating the sum array(s)
since there could be more than 4096 columns or rows exceed-
ing the sum array size when the image is rotated. On the other
hand, when the size of repeating pattern is small, the number
of pixels to be accumulated in a single column or row can be
too big such that it overflows a corresponding register in the
memory 100. In this case, the FPN statistics collection logic
484 may set the fpn_size parameter to be multiples of the
actual repeating pattern size to split the sum into multiple
array entries. In this manner, when an overflow occurs, the
sum may saturate.

Local Image Statistics Collection

Certain processing blocks, such as the local tone mapping
(LTM) logic 3004 and highlight recovery (HR) logic 1038
discussed further below, may use localized statistics to pro-
cess image data. For example, as will be discussed below, the
local tone mapping (LTM) logic 3004 may apply different
tone curves to different areas of the image frame depending
on the local luminances in the different areas of the image
frame. The manner in which luminance may vary throughout
the image frame may be collected and reported as individual
pixel luminance values, thumbnails, and/or local histograms.
The local image statistics logic 488 of the statistics core 146a
(FIG. 48) may generate these statistics. Software or other
processing blocks may employ the local statistics to control
the operation of the ISP pipe processing logic 80. For
instance, software may generate alocal tone map based on the
local statistics. The local tone map may be used by the local
tone mapping (LTM) logic 3004 to apply an appropriate local
tone curve to pixels depending on where the pixels are spa-
tially located.

One example of the local image statistics logic 488 appears
in FIG. 83. The local image statistics logic 488 may receive
the Bayer RGB image data 793 output by the inverse black
level compensation (IBLC) logic 478. It should be appreci-
ated, however, that the local image statistics logic 488 may,
alternatively, use YCC image data or image data in any other
suitable color space. Considering an example involving the
Bayer RGB image data 793, luminance computation logic
950 may compute several values relating to the luminance of
the input pixels. These may include average luminance (Yli-
n_avg) 952, maximal luminance (Ylin_max) 954, pixel lumi-
nance (Ylin) 956 (which may represent the average lumi-
nance 952, the maximal luminance 954, or a blend of the
average luminance 952 and the maximal luminance 954), and
logarithmic luminance (Y log) 958 (which may be a logarith-
mic expression of the pixel luminance (Ylin) 956). In alter-
native embodiments, the average luminance 952 and/or the
maximal luminance 954 may be replaced or supplemented by
a minimal luminance. The luminance computation logic 950
is discussed in greater detail below with reference to FIGS. 84
and 85.

The various luminance values, along with the Bayer RGB
pixel data 793, may enter thumbnail generation logic 960.
The thumbnail generation logic 960 may output thumbnails
962 based on any of these values. The thumbnails 962 may

US 9,105,078 B2

91

represent the input image data downscaled according to one
of many downscaling techniques, as discussed below with
reference to FIG. 86. The luminance values from the lumi-
nance computation logic 950 and the Bayer RGB input pixel
data 793 may also enter local histogram generation logic 964.
The local histogram generation logic may generate local his-
tograms 966 from these values. One example of the local
histogram logic 964 appears in FIG. 87, and will be discussed
in greater detail below.

FIGS. 84 and 85 represent two examples of the luminance
computation logic 950. Since the same luminance values may
be employed in the local statistics logic 488 as the local tone
mapping (LTM) logic 3004, the luminance computation logic
950 may replicate the process used in the LTM logic 3004.
Thus, the properties of the luminance used by the local sta-
tistics logic 488 may be the same as the luminance values
determined by the LTM logic 3004. In the example of FIG.
84, the Bayer RGB image data 793 first may be downsampled
in 2x2 downsample logic 970. The 2x2 downsample logic
970 may downsample the Bayer RGB image data 793 by 2
horizontally and by 2 vertically to improve precision. As
discussed above with reference to FIG. 66, for each Bayer
quad, the R, G, and B pixel values may be collected. Thus, the
2x2 downsample logic 970 may downsample RGB image
data 793 of the format R-Gr-Gb-B as follows:

Rbayer(x,y) = raw(2*x, 2*y);

Gbayer(x,y) = 0.5*raw(2*x,2*y+1) + 0.5%raw(2*x+1,2*y);
Bbayer(x,y) = raw(2*x+1,2%y+1);

R(x,y) = Gain[0]*(Rbayer(x,y)+OffsetIn[0])+OffsetOut[0];
G(x,y) = Gain[1]*(Gbayer(x,y)+OffsetIn[1])+OffsetOut[1]; and
B(x,y) = Gain[2]*(Bbayer(x,y)+OffsetIn[2])+OffsetOut[2];

where x=0-width/2-1 and y=0-height/2-1. The Gain, Off-
setln, and OffsetOut values may be chosen such that the above
process mirrors the white balance gain of other components
of the ISP pipe processing logic 80. That is, the output pixel
values of R, G and B may be approximately photometrically
equivalent to the pixel values generated from the raw image
data processing logic (RAWProc) 150. In other embodi-
ments, other downsampling logic (e.g., 4x4 downsampling
logic) may be used instead, but it should be appreciated that
he 2x2 downsample logic 970 may not perform averaging,
and thus discrete luminance information may be preserved. In
addition, RGB-format image data may be used instead of
raw-format image data, in which case the image data need not
be downsampled to obtain separate color components.

Average luminance computation logic 972 and maximal
luminance computation logic 974 may process the down-
sampled image data from the 2x2 downsample logic 970. The
average luminance computation logic 972 may compute the
average luminance (Ylin_avg) 952 as follows:

Ylin_avg=(CoeffAvgY/0]*R+CoeffAvg¥Y/1]*G+
CoeffAvgY/2] *B+Avg YOffset+1<<(LumShift—
1))>>LumShift,

where CoeffAvgY[0], CoeffAvgY[1] and CoeffAvgY|[2] rep-
resent 2s-complement numbers (e.g., 16-bit 2s-complement
numbers) to weight the color components and AvgYOffset
represents a signed number (e.g., a 32-bit signed number).
The value LumShift represents the number of bits to shift and
can be chosen such that the luminance fills the entire 16 bits
of range. As a result, CoeffAvgY may be understood to
include 8 fractional bits, such that the luminance values cover
the entire range. Using the full range may be valuable, since
the spatially varying lookup tables (LUTs) used in the local
tone mapping (LTM) logic 3004—which may be pro-

10

15

20

25

30

35

40

45

50

55

60

65

92

grammed by software based on the statistical luminance val-
ues, thumbnails, and/or local histograms—may have fixed
input ranges. The average luminance (Ylin_avg) 952 may be
clipped to minimum of zero and maximum of 65535.

The maximal luminance computation logic 974 may cal-
culate the maximal luminance (Ylin_max) 954 using the
maximal value of scaled R, G, and B values as the luminance:

Ylin_max=(max(CoeffMax Y/0]*R,CoeffMax Y/1/*G,
CoeffMaxY/2]*B)+1<<(LumsShift-1))>>Lum-
Shift,

where CoeffMaxY[0], CoeffMaxY[1] and CoeffMaxY[2]
may represent unsigned 16-bit numbers to weight the color
components and Ylin_max may be clipped to minimum of
zero and maximum of 65535. It maybe noted that this lumi-
nance definition has the advantage of keeping the signals in
gamut after the tone curve is applied in the local tone mapping
(LTM) logic 3004, discussed further below. With this defini-
tion of luminance, a pixel is considered to be bright if any of
the color channels are bright. Using the maximal luminance
(Ylin_max) 954 may prevent pixels with saturated colors
from gaining up and falling out of gamut in the local tone
mapping (LTM) logic 3004. If desired, a minimal luminance
may be calculated in a similar manner, using a minimum
rather than maximum operator and coefficients that may be
the same or different from those above.

Mixing logic 976, based on a mixing coefficient from a
mixing lookup table (LUT) 978, may blend the average lumi-
nance (Ylin_avg) 952 and the maximal luminance (Ylin_
max) 954 (and/or the minimal luminance) to obtain the pixel
luminance (Ylin) 956. The objective of the mixing logic 976
and the mixing LUT 978 may be to blend the luminance
signals smoothly. Namely, the average luminance (Ylin_avg)
952 may be weighted more heavily in dark to mid-level
brightness levels, while the maximal luminance (Ylin_max)
954 may be weighted more heavily in highlight brightness
levels. Some embodiments may involve mixing minimal,
maximal, and average luminances. For some of these embodi-
ments, the minimal luminance may be weighted most heavily
in dark brightness levels, the average luminance (Ylin_avg)
952 may be weighted most heavily in mid-level brightness
levels, and the maximal luminance (Ylin_max) 954 may be
weighted more heavily in highlight brightness levels.

With these objectives in mind, the mixing LUT 978 may be
programmed with any suitable values to smoothly mix, for
example, the two luminance signals 952 and 954 to produce
the input pixel luminance (Ylin) 956. The mixing LUT 978
may represent a table with 257 entries of 16-bits each. The
entries of the mixing LUT 978 may be evenly distributed
between 0 and 65535. The index to the mixing LUT 978 may
be either the average luminance (Ylin_avg) 952 or the maxi-
mal luminance (Ylin_max) 954, as selected in selection logic
980 by a signal (SelMix) 982. Selecting the average lumi-
nance (Ylin_avg) 952 to index the mixing LUT 978 may
produce smoother transitions of luminance, while the maxi-
mal luminance (Ylin_max) 954 may produce more aggres-
sive transitions. Thus, whether the selection signal (SelMix)
982 is used to select the average luminance (Ylin_avg) 952 or
the maximal luminance (Ylin_max) 954 may depend on the
presence or absence of noise in the image, the general bright-
ness of the image, and so forth. In another embodiment, ratios
between color channels may be used to index the mixing LUT
978 instead.

The following pseudo code represents one example of cal-
culating the input pixel luminance (Ylin) 956 as shown in
FIG. 84:

US 9,105,078 B2

93

if selMix ==

wMix = interplD (Ylin_max , wMixLUT);
else

wMix = interplD (Ylin_avg, wMixLUT);
Ylin =Ylin_avg*wMix + Ylin_max*(1-wMix) =
(Ylin_avg-Ylin_max)*wMix + Ylin_max;

where wMixLUT represents the mixing LUT 978 with 257
entries evenly distributed between 0 and 65535, and interp1D
denotes 1D linear interpolation employed with pixel values
greater than 8 bits. The entries in wMixLUT may have
unsigned 16 bit values with 15 fractional bits (i.e., 1.15) and
the range of wMixLUT is between zero and one (i.e.,
0<=wMixLLUT<=1)—any value larger than 1 may be consid-
ered to be 1. The pixel luminance (Ylin) 956 may be an
unsigned 16-bit value that is clipped to min of zero and max
of 65535.

The input pixel luminance (Ylin) 956 may, in some
examples, undergo offset, scaling, and log computation logic
984. Scaling, offsetting, and converting the luminance value
to logarithmic form may convert the pixel luminance (Ylin)
956 into a more useful form. The offset, scaling, and log
computation logic 984 may carry out the following compu-
tation, if implemented:

Y log=CoeffLog_ScaleOut*log(max(CoeffLog
ScaleIn*(¥lin+CoeffLog_OffsetIn),CoeffLog
MinVal))+CoeffLog_OffsetOut.

In the equation above, Y log represents an unsigned 16-bit
value clipped to a minimum of 0 and maximum of 65535. To
ensure numerical stability near zero, a minimum input value
(CoefflLog_MinVal) may be specified. Offset coefficients
Coeftflog_Offsetln and (Ylin+Coeffl.og_Offsetln) may be
signed 32-bit numbers with 15 fractional bits (17.15), while
Coeftlog_OffsetOut may be signed 32-bit number with no
fractional bit. Scale and minimum value coefficients, Coef-
flog_ScaleOut, Coeffl.og_Scaleln, and Coeffl.og_MinVal,
may be specified with 23 bits, including a sign bit, a 6-bit
signed exponent, and a 16-bit mantissa. The mantissa may be
a fractional 0.16 value where the hardware concatenates an
implied 1 on the most significant bit (MSB):

CoeffLog=(-1)"8"*Mant*(2"Exp),
where:
—-32<=Exp<=31

1.0<=Mant<2
This may allow a range of:
27-32<=abs(CoeffLog)<2"32

In the equation above, the value Coeffl.og_MinVal may be
a positive number—thus, the sign bit may be ignored. Note
that the output of log() may be represented as a signed 33 bit
number 16 fractional bits.

Other examples of the luminance computation logic 950
may not employ the mixing logic 976 or mixing lookup table
(LUT) 978. As shown in FIG. 85, the luminance computation
logic 950 may, alternatively, involve a discrete selection
between either the average luminance (Ylin_avg) 952 or the
maximal luminance (Ylin_max) 954. For instance, selection
logic 986 may select either the average luminance (Ylin_avg)
952 or the maximal luminance (Ylin_max) 954 based on the
SelMix signal 982. The selected luminance value may be
output as the input pixel luminance (Ylin) 956.

The SelMix signal 982 may be kept constant on a per-frame
basis, or may vary as different regions of the image frame are

10

15

20

25

30

35

40

45

50

55

60

65

94

processed. In one example, software controlling the ISP pipe
processing logic 80 may vary the SelMix signal 982 depend-
ing on whether the region of the image frame is in a dark to
mid-level brightness level or in a highlight brightness level.
The SelMix signal 982 may select the average luminance
(Ylin_avg) 952 when the luminance computation logic 950 is
computing luminance in dark to mid-level brightness levels.
The SelMix signal 982 may select the maximal luminance
(Ylin_max) 954 when the luminance computation logic 950
is processing image pixels from a highlight region of the
image frame. Doing so may preserve highlight information in
the area predominated by highlights, while avoiding high-
luminance noise in dark to mid-level brightness areas. In
other embodiments, the software may vary the SelMix signal
982 when ratios of color components fall above or below a
threshold.

The local tone mapping (LTM) logic 3004 or the highlight
recovery (HR) logic 1038 may vary operation depending on
certain thumbnail images generated by the thumbnail genera-
tion logic 960. For instance, in one example, the HR logic
1038 may focus on certain colors based on the thumbnails 962
from the thumbnail generation logic 960. Additionally, soft-
ware or firmware may use the thumbnails 962 to, for instance,
set the exposure, focus, and/or auto-white-balance. More-
over, tone curves (e.g., global or local tone curves) may be
generated by software using the thumbnails 962 from the
thumbnail generation logic 960 and/or local histograms 966
from the local histogram generation logic 966.

One example of the thumbnail generation logic 960
appears in FIG. 86, receiving as input the average luminance
(Ylin_avg) 952, the maximal luminance (Ylin_max) 954, the
input pixel luminance (Ylin) 956, the logarithmic luminance
(Y log) 958, and red (R), green (G), and blue (B) components
of the Bayer RGB image data 793. Selection logic 990 may
pass one of these signals to downsampling logic 992. The
downsampling logic 992 may downsample the selected
image data using one of four downsampling modes to pro-
duce one or more thumbnails 962. For each thumbnail 962
that the thumbnail generation logic 960 generates, the soft-
ware controlling the ISP pipe processing logic 80 may select
the input source (e.g., via selection logic 990) and the down-
sampling mode (e.g., selection logic 994). In one example,
the thumbnail generation logic 960 may generate a maximum
of six thumbnails 962, thumbnails based on R, G, and B
signals count as three separate thumbnails 962. As illustrated,
the downsampling logic 992 may employ one or more of the
following four downsampling modes: a subsampling mode
(SUB) 996, a block averaging mode (BLK) 998, a minimum
block value mode (MIN) 1000, and a maximum block value
mode (MAX) 1002.

In general, the downsampling logic 992 may downsample
each block of the image frame down to a single pixel of a
thumbnail 962. The size of the blocks may be specified by a
programmable horizontal downsampling factor 1004 and a
programmable vertical downsampling factor 1006 (e.g., a
block size of 32x32). The width and height of the generated
thumbnails 962 may be the width and height of the active
region 312 (FIG. 21) at full sensor resolution, divided by the
horizontal and vertical downsampling factors 1004 and 1006.
The top-left corner of the thumbnail image 962 will be
aligned to the top-left corner of the active region 312. When
the width and height of the active region 312 are not multiples
of the downsampling factors 1004 and 1006, certain bottom
rows and/or right columns may not be used in the thumbnail
generation, as partial tiles may be discarded. In at least one
embodiment, the downsampling factors 1004 and 1006 and
active region 312 may always be multiples of two pixels. The

US 9,105,078 B2

95

width of the thumbnail 962 may not exceed 128 pixels. Also,
the minimum horizontal downsampling factor 1004 may be
16 (in full sensor resolution), and the maximum number of
pixels being downsampled to one pixel may not exceed 214
at full sensor resolution. For example, a block measuring
128%128 pixels (in full sensor resolution) may be the largest
block size when the width and height are constrained to be the
same value.

The four downsampling modes 996, 998, 1000, and 1002
will now be discussed. The subsample mode (SUB) 996 may
subsample the pixel data spatially. Offset values from the
top-left corner of each block may be programmable. The
block averaging mode (BLK) 998 may perform block aver-
aging to obtain pixel values in the thumbnail images 962. For
example, if the downsampling factors 1004 and 1006 have
been selected to obtain 32x32 blocks of pixels, the pixels in
the 32x32 block may be averaged to determine the pixel value
in the thumbnail 962. The minimum pixel value mode (MIN)
1000 may select the minimum pixel value in each block to
represent each pixel of the output thumbnail 962. The maxi-
mum pixel value mode (MAX) 1002 may select the maxi-
mum pixel value in each block to represent each pixel of the
output thumbnail 962.

The offset values used in the subsampling mode (SUB)
996, as well as the downsampling factors 1004 and 1006, may
be defined in units of pixels in the sensor resolution—that is,
before downsampling by 2x2—and should be in multiples of
two. As such, the downsampling offset values in the horizon-
tal and vertical (Y) directions may be between O and the
horizontal downsampling value divided by the vertical down-
sampling value, less 1. For thumbnails 962 that are obtained
viathe block averaging mode (BLK) 998, the reciprocal of the
number of pixels (e.g., RecipNumPix=(1<<32)/numPix)
may be provided by software controlling the ISP pipe pro-
cessing logic 80.

The local histogram generation logic 964, an example of
which appears in FI1G. 87, may generate histograms of lumi-
nance intensities for each block of pixels, all blocks having
the same size. As illustrated in FIG. 87, selection logic 1010
may select from among the average luminance (Ylin_avg)
952, the maximal luminance (Ylin_max) 954, the input pixel
luminance (Y1lin) 956, the logarithmic luminance (Y log) 958,
and red (R), green (G), and blue (B) components of the Bayer
RGB image data 793. The selected signal may be received by
local (block) histogram logic 1012, which may generate local
histograms 966 in, for example, 32 bins of 16 bits each. Any
other suitable number of bins of suitable bit depths may also
be used.

As in the downsampling logic 992, the size of the block of
pixels used for the local histograms 966 may have indepen-
dently programmable horizontal and vertical sizes. That is, a
programmable horizontal block size signal 1014 may specify
the horizontal size of a pixel block and a vertical block size
signal 1016 may specify the vertical size of a block of pixels.
In one embodiment, the maximum number of horizontal
blocks may not exceed 64 blocks. The minimum block size in
the horizontal direction may be 64 pixels (at full sensor reso-
Iution). The block size in both directions and the active region
312 coordinates may be in multiples of two. When the width
and height of the active region 312 are not multiples of the
block sizes, bottom rows and/or right columns may not be
used for local histogram generation, as partial tiles may be
discarded. The maximum number of pixels in a block may not
exceed 2" 18 at full sensor resolution, in some embodiments.
For example, 512x512 pixels in full sensor resolution may be
the largest block size when the width and height are con-
strained to be the same value.

30

35

40

45

50

96

For each block, the local (block) histogram logic 1012 may
compute a local histogram of the luminance. The resulting
histogram 966 may have 32 bins, and the size of each bin may
be the same across all bins. The bin number may be obtained
as follows:

idx=(LocalHistScale*(Luminance-LocalHistOff-
set))>>16,

where LocalHistScale represents scaling for computing the
histogram, Luminance represents the selected signal input to
the local (block) histogram logic 1012, LocalHistOffset rep-
resents a programmable offset for computing the histogram.
The local histogram at block number (i,j), where (i) repre-
sents the horizontal (i) and vertical (j) coordinates of the
block, may be incremented as follows:

if (idx>=0 && idx<32)
LocalHist(i,j,idx) += Count;

Local histograms may be written to the memory 100 in
scan order as the pixel block is processed, and if the pixel
block was part of the active region 312. For each block, local
histogram counts are written from the lowest index—that is,
the darkest pixel count—to the highest index, or brightest
pixel counts. In one example, each histogram bin may be
represented by a 16-bit number. When each histogram bin is
represented by a 16-bit number, the value of each bin may be
saturated at 65535.

Considering the direct memory access (DMA) format of
local image statistics, two memory pointers may be used to
write statistics to the memory 100: one for local histograms
966 and one for thumbnails 962. The memory address regis-
ters may be double-buffered so that a new location in the
memory 100 can be specified on every frame. FIGS. 88, 89,
and 90 illustrate one example of a suitable memory format for
the local statistics. In particular, FIGS. 88 and 89 illustrate
thumbnail statistics written to memory in scan order as each
local region—that is, each block—is complete (if the block is
part of the active region 312). The thumbnail statistics 962
may be fully or partially enabled. When thumbnail statistics
are partial enabled, only four thumbnail statistics may be
written to memory, as shown in FIG. 88. When thumbnail
statistics are all enabled, as shown in FIG. 89, six thumbnails
may be written to memory. As shown in FIG. 90, and dis-
cussed above, local histogram statistics may include 32 bins
of 16 bits each.

In some embodiments, an interrupt may be sent to the host
when the local image statistics have been completed by the
DMA for the active region. Also, the row number in (tile/
block units) may be defined such that the interrupt occurs
when the DMA has completed the defined row. This may
allow firmware to begin early processing.

RAW Processing Logic

Referring again briefly to FIG. 8, the raw processing logic
150 may form an initial image processing block to operate on
raw Bayer image data. Using the statistics collected in the
statistics logic 140a and/or 1405 (e.g., as interpreted by soft-
ware running on the processor(s) 16 that may control the ISP
pipe processing logic 80), the raw processing logic 150 may
perform sensor linearization, black level compensation, fixed
pattern noise reduction, temporal filtering, defective pixel
detection and correction, spatial noise filtering, lens shading
correction, white balance gain operations, highlight recovery,
chromatic aberration correction and/or raw scaling, as will be

US 9,105,078 B2

97

discussed further below. As shown in the present embodi-
ment, the input signal to the raw processing logic 150 may be
the raw pixel output from the sensors 90 or raw pixel data
from the memory 100, depending on the present configura-
tion of the selection logic 142¢.

Referring now to FIG. 91, a block diagram showing a more
detailed view of an embodiment of the raw processing logic
150 is illustrated, in accordance with an embodiment of the
present technique. As shown, the raw processing logic 150
includes sensor linearization (SLIN) logic 1022, black level
compensation (BLC) logic 1024, fixed pattern noise reduc-
tion (FPNR) logic 1026, temporal filter logic (TF) 1028,
defective pixel correction (DPC) logic 1030, which may share
hardware logical blocks with noise statistics logic 1031 to
share resources, spatial noise filter (SNF) logic 1032, lens
shading correction (LSC) logic 1034, white balance gain
(WBG) logic 1036, highlight recovery (HR) logic 1038, and
raw scaler (RSCL) logic 1040. In one example, the raw pro-
cessing logic 150 may pass raw image data through these
logic blocks in the order above. In some embodiments, the
SLIN logic 1022, the BLC logic 1024, the FPNR logic 1026,
and the TF logic 1028 may benefit from occurring before the
DPC logic 1030, since these blocks perform corrections at a
pixel correction level. In another example, the raw scaler
(RSCL) logic 1040 may occur between the defective pixel
correction (DPC) logic 1030 and the spatial noise filter. In
other examples, the temporal filter (TF) logic 1028 may take
place between the spatial noise filter (SNF) logic 1032. For
instance, the order may be the SLIN logic 1022, the BLC
logic 1024, the FPNR logic 1026, the DPC logic 1030, the
RSCL logic 1040, the SNF logic 1032, the TF logic 1028, the
LSClogic 1034, the WBG logic 1036, and the HR logic 1038.
These logic blocks are described in greater detail below.

Before continuing, it should be appreciated that the noise
statistics logic is implemented in conjunction with the DPC
logic 1030 because doing so permits reusing some of the same
logic. In other embodiments, however, the noise statistics
logic may be located in any number of other spaces in the
pipeline. For instance, the noise statistics logic may occur
after the FPNR logic 1026, after the TF logic 1028, and/or
after the SNF logic 1032, and so forth. The noise statistics
logic may also be located outside of the raw processing logic
150. For instance, the noise statistics logic may be located
after the demosaicing (DEM) logic of the RGB processing
logic 160 or the luminance (Y) sharpening logic or chroman-
oise reduction logic of the YCC processing logic 170. Indeed,
the noise reduction logic may allow the determination of the
noise standard deviation after these noise reduction blocks
have operated on the pixel data. Thus, by monitoring the noise
standard deviation before and after processing, the effective-
ness of the noise reduction blocks may be gauged. When only
one noise statistics logic block is used (e.g., the noise statis-
tics logic appears only in conjunction with the DPC logic
1030 or only appears before TF logic 1028), the noise stan-
dard deviation at later blocks may be estimated from the noise
standard deviation determined in the one noise statistics logic
block. Moreover, when only one noise statistics logic block is
used, it may be valuable to locate the noise statistics logic
block before the SNF logic 1032 spreads noise around, which
could alter the noise standard deviation of the image by spa-
tially spreading noise.

Of note, the raw processing logic 150 may preserve more
image information than many conventional techniques.
Indeed, the raw processing logic 150 may operate on signed
image data, which allows for a zero offset that can preserve
negative noise. By processing the raw image data in a signed
format, rather than merely clipping the raw image data to an

10

15

20

25

30

35

40

45

50

55

60

65

98

unsigned format, image information that would otherwise be
lost may be preserved. To provide a brief example, noise on
the image sensor(s) 90 may occur in a positive or negative
direction. In other words, some pixels that should represent a
particular light intensity may have values of a particular (cor-
rect) value, others may have noise resulting in values greater
than the particular value, and still others may have noise
resulting in values less than the particular value. When an area
of the image sensor(s) 90 captures little or no light, sensor
noise may increase or decrease individual pixel values such
that the average pixel value is about zero. If only noise occur-
ring in a negative direction is discarded, however, the average
black color could rise above zero and would produce grayish-
tinged black areas.

In effect, the zero bias effectively centers the noise distri-
bution from the sensor(s) 90 around zero, so that filters and
functional operations can use pixels with information on both
sides of the distribution. Thus, the average noise will be
approximately zero. The distribution of noise may thus effec-
tively cancel out to provide colors that more accurately reflect
the scene that was captured. For example, noise from the
sensor(s) 90 may be Gaussian with a mean of zero. Without
applying the zero bias as taught in the present disclosure, the
average black color will be at zero bias after the noise filter.

Since the ISP pipe processing logic 80 may use signed
image data, rather than merely clipping the negative noise
away, the ISP pipe processing logic 80 may more accurately
render dark black areas in images. In alternative embodi-
ments, only some of the raw processing logic 150 may
employ signed image data. In general, however, the raw pro-
cessing logic 150 may use signed image data at least through
the noise statistics block and the SNF logic 1032, to allow for
a more precise determination of the noise standard deviation
(noise statistics) and to prevent spreading unwanted noise
(SNF logic 1032).

The process of scaling and offsetting the input image data
may take place as described above with reference to FIGS.
40-43 and F1G. 229. Scaling and offset logic 82 (not shown in
FIG. 91) may be implemented as a function of the input and
output direct memory access (DMA) logic that inputs and
outputs image data to and from the memory 100 and raw
processing logic 150.

Also of note is that the raw processing logic 150 does not
perform demosaicing of raw image data into the RGB format.
As such, the output of the raw processing logic 150 remains in
the raw image format. Since the output of the raw processing
logic 150 is in the raw format, the output of the raw processing
logic 150 may be stored in the memory 100 and reprocessed
through the raw processing logic 150 in multiple passes. For
example, software running on the processor(s) 16 may con-
trol the ISP pipe processing logic 80 to make multiple passes
on the same data, keeping the same or varying the control
parameters of the raw processing logic 150 each time. Under
certain conditions (e.g., low-light conditions or other high-
noise conditions), multiple passes through the raw processing
logic 150 may reduce noise in otherwise overly noisy images.

Moreover, in some embodiments, software may provide
raw image data obtained from another imaging device than
those of the electronic device 10 (e.g., a raw file obtained by
a third-party camera system). To provide one example, the
raw image data may be obtained by decompressing VL.C
compressed RAW images. The obtained raw image data may
be processed through the raw processing logic 150 as if the
image data had been obtained by the sensors 90. Software
controlling the ISP pipe processing logic 80 may program the
various functional blocks based on information related to the
third-party camera, sensor, lens, etc. For instance, the lens

US 9,105,078 B2

99

shading correction (L.SC) logic may adjust the radial gains
based on the lens used in the third-party camera.
Sensor Linearization (SLIN)

As mentioned above, raw image data received from some
sensors 90, particularly high dynamic range (HDR) sensors
90, may be nonlinear. The image processing of the raw pro-
cessing logic 150, however, may operate on linear image data.
The sensor linearization logic 1022 thus may convert nonlin-
ear image data from the sensors 90 into linear image data that
can be operated on by the raw processing logic 150. To
provide one example, raw image data in a companding format
first may be mapped from its encoded nonlinear state to a
linear space for additional image processing. The sensor lin-
earization logic 1022 may perform such a conversion.

The sensor linearization (SLIN) logic 1022 of the raw
processing logic (RAWProc) 150 may operate in substan-
tially the same way as the sensor linearization (SLIN) logic
470 of the statistics logic 140a and 1405. As such, sensor
linearization (SLIN) logic 1022 may operate in the manner
discussed above with reference to FIGS. 49-51.

Black Level Compensation (BLC)

The output of the sensor linearization (SLIN) logic 1022
may be passed to the black level compensation (BLC) logic
1024. The BLC logic 1024 may operate in substantially the
same way as the BLC logic 472. Thus, the BL.C logic 1024
may provide for digital gain, offset, and clipping indepen-
dently for each color component “c” (e.g., R, B, Gr, and Gb
for Bayer) on the pixels used for statistics collection. For
instance, as expressed by the following operation, the input
value for the current pixel is first offset by a signed value, and
then multiplied by a gain:

Y=(X+O/fc))xG/c],

where X represents the input pixel value for a given color
component ¢ (e.g., R, B, Gr, or Gb), O[c] represents a signed
16-bit offset for the current color component ¢, G|c]| repre-
sents a gain value for the color component ¢, andY represents
the output pixel value. In one embodiment, the gain G[c] may
be a 16-bit unsigned number with 2 integer bits and 14 frac-
tion bits (e.g., 2.14 in floating point representation), and the
gain G[c] may be applied with rounding. By way of example,
the gain G[c] may have a range of between O to 4 (e.g., 4 times
the input pixel value).

Next, as shown by the below, the computed value Y, which
is signed, may then be then clipped to a minimum and maxi-
mum range:

Y=(¥<min[c])?min[c]:(¥>max[c])?max[c]:¥).

The variables min[c] and max[c] may represent signed
16-bit clipping values for the minimum and maximum output
values, respectively. In one embodiment, the BLC logic 1024
may also be configured to maintain a count of the number of
pixels that were clipped above and below maximum and
minimum, respectively, per color component.

Fixed Pattern Noise Reduction (FPNR)

Subsequently, the output of the BLC logic 1024 is for-
warded to a fixed pattern noise reduction (FPNR) block 1026.
The FPNR block 1026 may use the fixed pattern noise statis-
tics generated by the FPN statistics logic 484 to remove the
fixed pattern noise from raw image data received from some
sensors 90. For instance, the FPNR block 1026 may extract
the fixed pattern noise in the raw image by identifying the
pattern with the highest energy in the FPN statistics deter-
mined by the FPN statistics logic 484. As discussed above
with reference to FIGS. 80-82 (FPN statistics logic 484),
fixed pattern noise (FPN) is generally due to variations in
pixel or column properties that manifest themselves as spatial

10

15

20

25

30

35

40

45

50

55

60

65

100

noise. For example, variations in pixel-offset values may
result from variations in dark current or in offsets of an ampli-
fier chain coupled to the sensors 90.

In general, fixed pattern noise may include noise in the
sensors 90 that has a repeating or fixed pattern. For example,
the fixed pattern noise may include row-wise or column-wise
fixed variations that may be removed such that higher quality
images can be displayed. In another example, fixed pattern
noise may be a diagonal fixed variation that occurs due to a
manufacturing process such as a laser annealing process that
creates a different amount of light going to the pixels, which
may result in a noise that has a pattern. Thus, the fixed pattern
noise may be a row-wise, column-wise, or diagonal-wise
pattern. Alternatively, the fixed pattern noise may be a whole
frame pattern that changes pixel-to-pixel but remains similar
from frame-to-frame.

Typically, during the manufacturing process, a calibration
procedure may determine the fixed pattern noise, which may
be used to remove the fixed pattern noise. However, the fixed
pattern noise may change over time due to temperature, inte-
gration time, etc. In this manner, the fixed pattern noise sta-
tistics determined by the FPN statistics logic 484, as
described above, may be used by the FPNR block 1026 to
adapt the fixed pattern noise removal process on the fly as the
fixed pattern noise changes.

Inone embodiment, the fixed pattern noise may correspond
to variations in gain and offsets of pixel intensity values as
indicated in the fixed pattern noise statistics determined by
the FPN statistics logic 484. The FPNR block 1026 may
remove the offset fixed pattern noise by subtracting a dark
frame from the input image. The dark frame may be an image
captured by the sensors 90 in the dark (e.g., an image of noise
in the sensor 90a). In this manner, the dark frame may be
generated by capturing image data with a closed shutter or
during camera calibration. In general, the dark frame may
change based on an integration time, a temperature, and/or
other external factors. In one embodiment, the offset may be
generated by a linear combination of two or more dark
frames. For instance, a dark frame acquired with an integra-
tion time of 10 ms may be bilinearly interpolated with a dark
from with an integration time of 20 ms.

As mentioned above, in addition to offsets of pixel values,
the fixed pattern noise may include gain fixed pattern noise.
Gain fixed pattern noise may be a ratio between an optical
power on a pixel versus an electrical signal output on the
pixel. For instance, the gain fixed pattern noise may be pixel-
to-pixel response non-uniformity (PRNU). The FPNR block
1026 may remove the gain fixed pattern noise by multiplying
different gain values to pixels, thereby compensating for the
PRNU effects on the pixels.

In one embodiment, the offset and gain components for
each pixel in an input image may be stored in an offset
look-up table (LUT) and a gain LUT, respectively. Each LUT
may be calibrated based on various types of fixed pattern
noise, which may be identified using the fixed pattern noise
statistics. In addition to or in lieu of being calibrated based on
the various types of fixed pattern noise, each LUT may be
calibrated based on a temperature value acquired by the tem-
perature sensor or an integration time for the sensors(s) 90.
For instance, each LUT may be calibrated based on a per-unit
temperature value change on the temperature sensor. By stor-
ing the offset and gain components for each pixel in LUTs, the
offset and gain components may be represented using fewer
bits per pixel and may be used to specify a non-linear map-
ping. The offset and gain components for each pixel may be
stored in a fixed pattern noise frame. In one embodiment, the
fixed pattern noise frame 1060, as illustrated in FIG. 92, may

US 9,105,078 B2

101

include packed bits that encode two offsets and a gain. A first
offset 1062 in the fixed pattern noise frame 1060 may be
located in the least significant bits of the fixed pattern noise
frame 1060 followed by a second offset 1064, and then fol-
lowed by a gain 1066. The fixed pattern noise frame may be
represented in 8, 10, 12, 14, or 16-bit. As such, the fixed
pattern noise frame width (fpn_frame_bitdepth) may be
determined by the RAW format (RAWS, 10, 12, 14 or 16) of
the input image.

After determining the width of the fixed pattern noise
frame, the width of the offsets and gain in the fixed pattern
noise frame 1060 may be programmed. In this manner, the
number of bits used for each offset (1062 and 1064) in the
fixed pattern noise frame 1060 may be specified (frame_
off_width[0] and frame_off_width[1]) prior to when the oft-
sets of the fixed pattern noise frame of a pixel are set. For
example, with a RAW 16 input image, bit widths for the first
offset 1062, the second offset 1064, and the gain 1066 may be
set to 6, 6, and 4, respectively. Alternatively, if the gain 1066
is not required, the first offset 1062 and the second offset 1064
may be set to 8 bit each. In one embodiment, the fixed pattern
noise frame 1060 may include only one offset as opposed to
two offsets.

The bits of the fixed pattern noise frame not being used for
an offset may consequently be used for the gain portion 1066
of the fixed pattern noise frame 1060. Since the gain portion
1066 of the fixed pattern noise frame 1060 may be fractional
value, the number of bits to be used as the fractional value of
the gain may also be specified (frame_gain_fraction) prior to
the gain is set in the fixed pattern noise frame 1060 for a pixel.

After determining the fixed pattern noise frame 1060 (off-
set and gain values) to compensate for the fixed pattern noise
of a pixel, the FPNR block 1026 may subtract an offset and
apply a gain (up or down) to the pixel, thereby compensating
for the fixed pattern noise in the input image. Additional
details with regard to compensating for the fixed pattern noise
in the input image are discussed below with reference to FIG.
93.

At block 1072, the FPNR block 1026 may determine an
offset value and a gain value for each pixel based on the fixed
pattern noise frame for each pixel as shown below:

frame_offset[0] = fpn (j,i) & frame_off mask[0]

frame_offset[1] = (fpn (j,i) & frame_off mask[1])>> frame_off width[0]
frame_gain = ((fpn (j,i) & frame_gain_mask))>>(frame_off width[0] +
frame_off_ width[1])

where frame_offset[0] corresponds to the first offset 1062 and
frame_off_mask[0] corresponds to a mask for the first offset
1062, frame_offset[1] corresponds to the second offset 1064,
frame_off_mask[1] corresponds to a mask for the second
offset 1064, frame_gain_mask correspond to a mask for the
gain 1066, and fpn (j,i) corresponds to a fixed pattern noise
frame for a pixel in the input image located at (j, 1).

In another embodiment, if an offset LUT is enabled and/or
a gain LUT is enabled, the FPNR block 1026 may apply a
mask to the fixed pattern noise frame 1060 for a respective
pixel based on the mask and the fixed pattern noise frame as
follows:

40

45

102

if (offset_LUT _en)
frame_offset[0] = offset_LUT [fpn (j,i) & frame_off mask[0]]
frame_offset[1] = offset_LUT [fpn (j,i) &
frame_off_mask[1])>> frame_off width[0]]

if (gain_LUT _en)
frame_gain = gain_LUT [fpn (j,i) &
frame_gain_mask))>>(frame_off width[0] +

frame_off width[1]]

where offset_LUT represents an interpolation of the offset
from a look-up table for the offset, frame_off_width [0] cor-
responds to a number of bits used in the fixed pattern noise
frame to specify the first offset 1062, frame_off width [1]
corresponds to a number of bits used in the fixed pattern noise
frame to specify the second offset 1064, and gain LUT rep-
resents an interpolation of the gain from a look-up table for
the gain 1066.

The total frame offset may then be determined as follows:

frame_off=frame_off weight[0]*frame_offset[0]+
frame_off weight[1]*frame_offset[1]

where frame_off_weight [0] corresponds to a weighting fac-
tor for the first offset 1062, and frame_off_weight [1] corre-
sponds to a weighting factor for the second offset 1064.

As shown in the equations above, after appropriate mask-
ing of the fixed pattern noise frame, the FPNR block 1026
may use lookup-table operations to determine an offset and
gain for the respective pixel. In one embodiment, an optional
linear interpolation between look-up table values may be
performed if the offset width of the fixed pattern noise frame
is larger than the number of entries in the LUT. As such, the
interpolation may occur if the width of the offset or gain is
larger than the corresponding LUT size. The offset LUT may
include signed 17-bit output levels such that the spacing on
the input is a maximum value between 1 and 2" (offset_width-
7). As such, if the offset is 7 bit or less, the spacing is 1 and the
FPNR block 1026 may not perform any interpolation. The
gain LUT may include unsigned 16-bit output levels such that
the spacing on the input is a maximum value between 1 and
2"(gain_width—6). Therefore, if the gain is 6 bit or less, the
spacing is 1 and the FPNR block 1026 may not perform any
interpolation.

At block 1074, the FPNR block 1026 may determine if a
row fixed pattern noise correction feature has been enabled
(i.e., row_{pn_en=1). The row fixed pattern noise correction
feature may be enabled if the FPN statistics logic 484 collects
fixed pattern noise that indicates a row-wise fixed pattern
noise in the input image. In one embodiment, the row fixed
pattern noise correction feature may be enabled with respect
to each color component (i.e., row_fpn_en[c]=1). If the row
fixed pattern noise correction feature is enabled, then the
FPNR block 1026 may proceed to block 1076.

At block 1076, the FPNR block 1026 may determine the
fixed pattern noise correction factors for each row of the input
image similar as to how the fixed pattern noise correction
factors for each pixel has been determined as described
above. In one embodiment, the FPNR block 1026 may deter-
mine an offset value and a gain value for each row based on
the fixed pattern noise frame for each row as shown below:

row_offset[0] = row_fpn[floor(row_pos)] & row_off_mask[0]
row_offset[1] = (row_fpn[floor(row_pos)] & row_off mask[1])>> row_off width[0]
row_gain = ((row_fpn[floor(row_pos)] & row_gain_mask))>>(row_off width[0] + row_off_width[1])

where

row_pos = ((row_pos_init[c] + row_stepX[c]*i + row_stepY[c]*j) modulo row_fpn_size[c]) +

row_pos_offset[c]

US 9,105,078 B2

103

and where row_oftset[0] corresponds to the first offset 1062
and row_off_mask|[0] corresponds to a mask for the first
offset 1062, row_offset[1] corresponds to the second offset
1064, row_off_mask[1] corresponds to a mask for the second
offset 1064, row_gain_mask[0] correspond to a mask for the
gain 1066, row_fpn[floor(row_pos)] corresponds to the fixed
pattern noise frame for a respective row located at
floor(row_pos), row_pos corresponds to a current row posi-
tion of the respective pixel in the active region per color
component, row_off_width[0] corresponds to a number of
bits the row fixed pattern noise frame that are used to specify
the first offset 1062, row_off__width[1] corresponds to a num-
ber of bits the row fixed pattern noise frame that are used to
specify the second offset 1064, and row_gain corresponds to
the gain 1066 in the row fixed pattern noise frame, row_
pos_init[c] corresponds to an initial position in a row fixed
pattern noise array, which may be determined based on fixed
pattern noise statistics or calibration data obtained from a
supplier of the sensors 90, for a first pixel of an active region
per color component in the input image, row_stepX|[c] corre-
sponds to a horizontal step size in the row fixed pattern noise

104
ponents (i.e., row_fpn_en=0), thenthe FPNR block 1026 may
set a row offset value in the row fixed pattern noise frame to 0
and set the gain value in the row fixed pattern noise frame to
1 as shown below:

row_off=0

row_gain=(1<<row_gain_{fraction)

where row_gain_fraction corresponds to a number of bits to
be used for the row gain portion of the row fixed pattern noise
frame. After setting the row offset value and the row gain
value, the FPNR block 1026 may proceed to block 1078.

At block 1078, the FPNR block 1026 may determine the
fixed pattern noise correction factors for each column of the
input image similar as to how the fixed pattern noise correc-
tion factors for each pixel has been determined as described
above for each pixel and each row of the input image. In one
embodiment, the FPNR block 1026 may determine an offset
value and a gain value for each column based on the fixed
pattern noise frame for each column as shown below:

col_offset[0] = col_fpn[floor(col_pos)] & col_off mask[0]
col_offset[1] = (col_fpn[floor(col_pos)] & col_off mask[1])>> col_off_ width[0]
col_gain = ((col_fpn[floor(col_pos)] & col_gain_mask))>>(col_off width[0] + col_off width[1])

where

col_pos = ((col_pos_init[c] + col_stepX[c]*i + col_stepY[c]*j) modulo col_fpn_size[c]) + col_pos_offset

[e]

array per color component, row_stepY[c] corresponds to a
vertical step size in the row fixed pattern noise array per color
component, row_f{pn_size[c] corresponds to the size of a
repeating pattern in the row fixed pattern noise array per color
component, and row_pos_offset[c] corresponds to an offset
in the row fixed pattern noise array for the position of the first
element per color component.

In another embodiment, if an offset LUT is enabled and/or
a gain LUT is enabled, the FPNR block 1026 may apply a
mask to the fixed pattern noise frame 1060 for a respective
pixel based on the mask and the fixed pattern noise frame as
follows:

30

35

40

and where col_offset[0] corresponds to the first offset 1062
and col_off_mask[0] corresponds to a mask for the first offset
1062, col_offset[1] corresponds to the second offset 1064,
col_off_mask[1] corresponds to a mask for the second offset
1064, col_gain_mask correspond to a mask for the gain 1066,
col_fpn[floor(col_pos)] corresponds to the fixed pattern noise
frame for a respective column located at floor(col_pos),
col_pos corresponds to a current column position of the
respective pixel in the active region per color component,
col_off_width[0] corresponds to a number of bits the column
fixed pattern noise frame that are used to specify the first
offset 1062, col_off_width|[1] corresponds to a number of bits

if (offset_LUT _en)

row_offset[0] = offset_ LUT [row_fpn[floor(row_pos)] & row_off__mask[0]]

row_offset[1] = offset_ LUT [(row_fpn[floor(row_pos)] & row_off mask[1])>> row_off width[0]]

if (gain_LUT _en)

row_gain = gain_LUT [((row_fpn[floor(row_pos)] & row_gain_mask))>>(row_off_width[0] +

row_off width[1])]

where row_off_width [0] corresponds to a number of bits
used in the fixed pattern noise frame to specify the first offset
1062, and row_off_width [1] corresponds to a number of bits
used in the fixed pattern noise frame to specify the second
offset 1064.

The total row offset may then be determined as follows:

row_off=row_off weight[0]*row_offset[0]+row_
off_weight[1]*row_offset[1]

where row_off__weight [0] corresponds to a weighting factor
for the first offset 1062, and row_off_weight [1] corresponds
to a weighting factor for the second offset 1064.

After setting the row offset value and the row gain value as
shown above, the FPNR block 1026 may proceed to block
1078.

Referring back to block 1074, if the row fixed pattern noise
correction feature is not enabled for one or more color com-

55

60

65

the column fixed pattern noise frame that are used to specify
the second offset 1064, and col_gain corresponds to the gain
1066 in the column fixed pattern noise frame, col_pos_init[c]
corresponds to an initial position in a column fixed pattern
noise array, which may be determined based on fixed pattern
noise statistics or calibration data obtained from a supplier of
the sensors 90, for a first pixel of an active region per color
component in the input image, col_stepX[c] corresponds to a
horizontal step size in the row fixed pattern noise array per
color component, col_stepY|[c] corresponds to a vertical step
size in the column fixed pattern noise array per color compo-
nent, col_fpn_size[c] corresponds to the size of a repeating
pattern in the column fixed pattern noise array per color
component, and col_pos_offset[c] corresponds to an offset in
the column fixed pattern noise array for the position of the
first element per color component.

US 9,105,078 B2

105
In another embodiment, if an offset LUT is enabled and/or
a gain LUT is enabled, the FPNR block 1026 may apply a
mask to the fixed pattern noise frame 1060 for a respective
pixel based on the mask and the fixed pattern noise frame as
follows:

106
blocks 1072, 1076, and 1080 to the input image. An example
of the effects of applying the fixed pattern noise offsets and
gains as described in process 1070 above is illustrated in FIG.
224 and FIG. 225. In one embodiment, the image illustrated
in FIG. 224 may correspond to image data received by the

if (offset_LUT _en)
col_offset[0] = offset_LUT [col_fpn[floor(col_pos)] & col_off__mask[0]]

col_offset[1] = offset_LUT [(col_fpn[floor(col_pos)] & col_off mask[1])>> col_off width[0]]

if (gain_LUT _en)

col_gain = gain_LUT [((col_fpn[floor(col_pos)] & col_gain_mask))>>(col_off width[0] +

col_off width[1])]

where col_off_width [0] corresponds to a number of bits used
in the fixed pattern noise frame to specify the first oftset 1062,
and col_off_width [1] corresponds to a number of bits used in
the fixed pattern noise frame to specify the second offset
1064.

The total column offset may then be determined as follows:

col_off=col_off_weight[0]*col_offset[0]+col_
off_weight[1]*col_offset[1]

where col_off_weight [0] corresponds to a weighting factor
for the first offset 1062, and col_off_weight [1] corresponds
to a weighting factor for the second offset 1064.

The column fixed pattern noise frame may be represented
in the same manner as the pixel fixed pattern noise frame of
FIG. 92. The column offset (col_off) may be used to represent
a pattern of a known frequency using a horizontal step size
(col_stepX][c]) and a vertical step size (col_stepY|c]) into a
column offset array. In one embodiment, a position in a col-
umn fixed pattern noise table (col_pos_init) may be repre-
sented as a 14.16 fractional number. In one embodiment, the
column fixed pattern noise table may be generated based on
the fixed pattern noise statistics. Similarly, the horizontal step
(col_stepX][c]) and the vertical step (col_stepY[c]) may be
represented as a 14.16 fractional number. As such, the FPNR
block 1026 may maintain the column fixed pattern noise
position in the column fixed pattern noise table (col_pos) and
increment the column fixed pattern noise position by a corre-
sponding horizontal step (col_stepX][c]). The horizontal step
may be truncated to a closed integer value to provide a precise
step value. At the end of every row in the input image, the
FPNR block 1026 may increment the column fixed pattern
noise position (col_pos) by the vertical step (col_stepY]c]).
The column fixed pattern noise position (col_pos) may then
wraps around when it reaches the maximum index of the
column fixed pattern noise table. After setting the column
offset value and the column gain value as described above, the
FPNR block 1026 may proceed to block 1082.

Referring back to block 1078, if the column fixed pattern
noise correction feature is not enabled for one or more color
components (i.e., col_fpn_en[c]=1), then the FPNR block
1026 may set a column offset value in the column fixed
pattern noise frame to 0 and set the gain value in the column
fixed pattern noise frame to 1 as shown below:

col_off=0

col_gain=(1<<col_gain_fraction)

where col_gain_{fraction corresponds to a number of bits to be
used for the column gain portion of the row fixed pattern noise
frame. After setting the column offset value and the column
gain value, the FPNR block 1026 may proceed to block 1082.

At block 1082, the FPNR block 1026 may apply the fixed
pattern noise offsets and gains (i.e., fixed pattern noise cor-
rection factors per pixel, row, and/or column) determined at

25

45

50

60

FPNR block 1026, and the image illustrated in FIG. 225 may
correspond to image data processed by the FPNR block 1026
to remove the column offset fixed pattern noise from the
image data.

In addition to the fixed pattern noise correction factors per
pixel, row, and/or column, the FPNR block 1026 may also
apply global input and output offsets as described below with
reference to FIG. 94. At block 1092, the FPNR block 1026
may receive global input and/or output offset values for the
input image. At block 1094, the FPNR block 1026 may deter-
mine whether the global offset values are to be added before
applying the gain values of the fixed pattern noise correction
factors that correspond to the pixel, row, and/or column of the
input image.

If the global offset values are to be added before applying
the gain values of the fixed pattern noise correction factors,
the FPNR block 1026 may proceed to block 1096. At block
1096, the FPNR block 1026 may apply the fixed pattern noise
correction factors and the global offsets as follows:

tmp = max(—2ﬁl7, min(2A17—1, (x(,1) +

offset_in[c] — row_off — col_off - frame_off)))
tmp = max(—2ﬁl7, min(2A17—1, (tmp * row_gain +

(1<< (row_gain_fraction-1))) >> row_gain_fraction))
tmp = max(—2ﬁl7, min(2A17—1, (tmp * col_gain +

(1<< (col_gain_fraction-1))) >> col_gain_fraction))
tmp = max(—2ﬁl7, min(2A17—1, (tmp * frame_gain +

(1<< (frame_gain_fraction-1))) >> frame_gain_fraction))
x(j,i) = max(—2ﬁl6, min(2A16—1, tmp + offset_out[c]))

where tmp corresponds to a temporary value, x(j,i) corre-
sponds to a pixel value for the respective pixel, offset_in[c]
corresponds to a global input offset per color component, and
offset_out[c] corresponds to a global output offset per color
component.

Referring back to block 1094, if the global offset values are
not to be added before applying the gain values of the fixed
pattern noise correction factors, the FPNR block 1026 may
proceed to block 1098. At block 1098, the FPNR block 1026
may apply the fixed pattern noise correction factors and the
global offsets as follows:

tmp = maX(—2A17, min(2A17—1, ((x(j,i) + offset_in[c] * row_gain +
(1<<(row_gain_fraction-1)))>> row_gain_fraction))

tmp = maX(—2A17, min(2A17—1, (tmp * col_gain+ (1<<
(col_gain_fraction-1)))>> col_gain_fraction))

tmp = maX(—2A17, min(2A17—1, (tmp * frame_gain + (1<<
(frame_gain_fraction-1))) >> frame_gain_fraction))

tmp = maX(—2A17, min(2ﬁl7—1, tmp — row_off — col_off — frame_off))

x(j,i) = max(-2 16, min(2 16-1, tmp + offset_out[c]))

In one embodiment, the FPNR block 1026 may bypass the
fixed pattern noise processes (1070 and 1090) described in

US 9,105,078 B2

107

FIG. 93 and FIG. 94 if the value of the respective pixel is not
between a low threshold value and a high threshold value. As
such, the FPNR block 1026 may evaluate whether the value of
each pixel (x(j,i)) is less than a low threshold value (By-
passThdL.ow) or greater than a high threshold value (By-
passhdHigh) as shown below.

(x(7,1)<BypassThdLow|x(7,i)>Bypass ThdHigh)

If the value of the respective pixel (x(j,i)) is less than a low
threshold value (BypassThdl.ow) or greater than a high
threshold value (BypasshdHigh), the FPNR block 1026 may
bypass the fixed pattern noise processes (1070 and 1090) for
the respective pixel.

In one embodiment, the FPNR block 1026 may compen-
sate for the fixed pattern noise in the input image based on a
temperature value acquired from the temperature sensor 22 or
an integration time for the sensor(s) 90. Here, look-up tables
for various temperature values that acquired by the tempera-
ture sensor 22 and/or integration times that correspond to the
sensor(s) 90 may include correction factors for each pixel in
the input image. Like the look-up tables described above, the
look-up tables for various temperature values and/or integra-
tion times may include offset values and gain values, which
may be used to correct each pixel in the input image for fixed
pattern noise. In one embodiment, the FPNR block 1026 may
determine the current temperature value of the temperature
sensor 22 and/or the integration time of the sensor(s) 90 and
interpolate the temperature value and/or the integration time
based on the corresponding look-up tables, which may be
stored in the memory 18. In one embodiment, the look-up
tables for various temperature values and/or integration times
may be combined with the look-up tables described above,
which may be determined based on a type of fixed pattern
noise, to determine more accurate correction factors for each
pixel in the input image.

Temporal Filter (TF)

The output of the FPNR block 1026 may be input into the
temporal filter block 1028, as depicted in FIG. 91. In addition
to the output of the FPNR block 1026, the temporal filter
block 1028 may receive raw image data that may be stored in
or written to the memory 110 or may be provided directly
from the sensors 94 via sensors interfaces 94 (not shown). The
temporal filter block 1028 may perform various image pro-
cessing operations on the received image data on a pixel-by-
pixel basis. In one embodiment, the temporal filter block 1028
may be used to reduce noise by averaging frames of image
data in the temporal direction. As such, the temporal filter
block 1028 may blend prior frames of the image data into
each pixel of the image data. In addition to the image data, the
temporal filter block 1028 may also receive and output vari-
ous signals (e.g., Rin, Hin, Hout, and Yout—which may rep-
resent motion history and luma data used during temporal
filtering) when performing the pixel processing operations, as
will be discussed further below. The output of the pixel tem-
poral filter block 1028 may then be forwarded to the defective
pixel correction (DPC) block 1030 or may be sent to the
memory 110.

In one embodiment, the temporal filter block 1028 may be
pixel-adaptive based upon motion and brightness character-
istics. For instance, when pixel motion is high, the filtering
strength may be reduced in order to avoid the appearance of
“trailing” or “ghosting artifacts” in the resulting processed
image, whereas the filtering strength may be increased when
little or no motion is detected. Additionally, the filtering
strength may also be adjusted based upon brightness data
(e.g., “luma”). For instance, as image brightness increases,
filtering artifacts may become more noticeable to the human

10

15

20

25

30

35

40

45

50

55

60

65

108

eye. Thus, the filtering strength may be further reduced when
a pixel has a high level of brightness.

In applying temporal filtering, the temporal filter block
1028 may receive reference pixel data (Rin) and motion his-
tory input data (Hin), which may be from a previous filtered or
original frame. Using these parameters, the temporal filter
block 1028 may provide motion history output data (Hout)
and filtered pixel output (Yout). The filtered pixel output Yout
may then be forwarded to the DPC block 1030, as mentioned
above.

In one embodiment, the temporal filter block 1028 may
apply filter coefficients to pixel data from the received image
data to generate the filtered pixel output (Yout). The filter
coefficients may be adjusted adaptively on a per pixel basis
based at least partially upon motion data between an input
pixel x(t) and a reference pixel r(t-1). For instance, the input
pixel x(t), with the variable “t” denoting a temporal value,
may be compared to the reference pixel r(t-1) in a previously
filtered frame or a previous original frame to determine the
motion data associated with the input pixel. In one embodi-
ment, the motion data may be used to generate a motion table
index value (m) that corresponds to a motion table (M). The
motion table (M) may contain the filter coefficients that may
be used to generate the filtered pixel output (Yout). In one
embodiment, the motion table (M) may be indexed according
to motion data (e.g., motion table index value) and a bright-
ness value of a pixel. As such, the temporal filter block 1028
may retrieve filter coefficients from the motion table (M) and
apply the filter coefficients to the pixel data to generate fil-
tered pixel output (Yout). The process for generating filtered
pixel output (Yout) employed by the temporal filter block
1028 is described in greater detail below with reference to
FIGS. 95-98.

In one embodiment, the motion table (M) may generally be
oriented such that pixels exhibiting high motion values may
have coefficient values equal to 0. As such, the motion table
(M) may set a maximum motion value as the first motion
value that has a 0 coefficient value. The motion table (M) may
then divide the number of entries in the table by the maximum
motion value to determine the filter coefficient for each entry
in the motion table (M).

Referring to FIG. 95, a flow diagram of a method 1110 for
temporally filtering the image data received by the temporal
filter block 1028 is illustrated. Although the method 1110
indicates a particular order of operation, it should be under-
stood that the method 1110 is not limited to the illustrated
order. Instead, the method 1110 may be performed in any
suitable order. In one embodiment, the method 1110 may be
performed by the temporal filter block 1028 of FIG. 91.

Atblock 1112, the temporal filter 1028 may receive image
data. At block 1114, the temporal filter block 1028 may deter-
mine a motion delta value for each respective pixel in the
image data. The motion delta value may represent the amount
of'motion occurring in a respective pixel between frames. The
motion delta value may be determined by calculating the
difference between a pixel value for the respective pixel in a
respective frame and a pixel value for the respective pixel in
its previous frame. By comparing these two time dependent
pixel values, the temporal filter block 1028 may represent the
amount of motion occurring in the respective pixel in the
motion delta value.

In one embodiment, the motion delta d(j,i,t) may be com-
puted by determining the maximum of three absolute deltas
between original and reference pixels for three horizontally
collocated pixels of the same color, as demonstrated in the
formula below:

US 9,105,078 B2

109

d(j,i,f)=max3[abs(x(j,i-2,6)-7(j,i-2,0)),
(abs(x(j,i,0)-7(j,1,1)),

(abs(x(j,i+2,t)-r(j,i+2,1))]

where x(j, 1, t) corresponds to the pixel value of a pixel, j
corresponds to the vertical position of the pixel, i corresponds
to the horizontal position of the pixel, t corresponds to time.

By determining the maximum of the three absolute deltas
between original and reference pixels for three horizontally
collocated pixels of the same color, the temporal filter block
1028 may more accurately represent the motion in the respec-
tive pixel with respect to the three horizontally collocated
pixels of the same color.

To calculate the motion delta d(j,i,t) for the respective
pixel, the temporal filter block 1028 may first receive data
regarding a spatial location of the respective pixel. The tem-
poral filter block 1028 may then identify the reference pixel
from a previous frame (collocated reference pixel) based on
the spatial location of the respective pixel. For instance, refer-
ring briefly to FIG. 96, the spatial locations of three reference
pixels 1130, 1132, and 1134 that are collocated with original
input pixels 1136, 1138, and 1140 are illustrated. As shown in
FIG. 96, the collocated reference pixels 1130,1132, and 1134
are located in the same spatial position as original input pixels
1136, 1138, and 1140. However, the reference pixels 1130,
1132, and 1134 are located in a previous frame in time as
indicated by “t-1,” where t represents the current frame in
time.

In one embodiment, instead of using three collocated hori-
zontal pixels, the temporal filter block 1028 may calculate the
motion delta d(j,i,t) for the respective pixel by determining
the maximum of absolute deltas between original and refer-
ence pixels for NxN collocated pixels of the same color. For
instance, the temporal filter block 1029 may determine the
absolute delta between the original pixel values and the ref-
erence pixel values for 3x3 or 5x5 collocated pixels of the
same color.

After calculating the motion delta d(j,it), the temporal
filter block 1028 may use the motion delta d(j,i,t) to determine
a filter coeflicient to be applied to the pixel value x(j,i,t). As
mentioned above, when pixel motion is high, the filtering
strength (i.e., filter coefficient) may be reduced in order to
avoid the appearance of “trailing” or “ghosting artifacts” in
the resulting processed image. In one embodiment, the tem-
poral filter block 1028 may determine the filter coefficient for
a respective pixel using a motion table (M). The motion table
(M) may include a number of filter coefficients (K) which
may be predetermined based on a noise variance for different
brightness values of a pixel. In one embodiment, the motion
table (M) may be indexed according to a motion table lookup
index (m) and a brightness value (b) for the respective pixel as
shown below.

M[b][m]

where b corresponds to a brightness value of a pixel and m
corresponds to a motion table lookup index for the pixel.

The motion table lookup index (m) may represent a motion
for the respective pixel. As such, the motion table lookup
index (m) may be determined based on the motion delta
d(j.i,t) and a motion history value (i.e., motion delta d(j,i,t-1)
of the reference pixel at time t-1) for the respective pixel.
Keeping this in mind, at block 1116, the temporal filter block
1028 may determine the motion table lookup index (m) for
the respective pixel. In one embodiment, the motion lookup
index lookup (m) and the motion history output h(t) may be
determined using the following formulas:

10

15

20

25

30

35

40

45

50

55

60

65

110

m=gain_rad*gain[comp]*(d(j,;,1)+h(j,i,--1))
h(.,0=d(i,0+K*(h(j,i,1-1)-d(,i,0)

where gain_rad is a radial gain lookup table interpolation
function that performs a linear interpolation between a radial
gain table and a radius of an optical center of a pixel, K is a
filter coefficient from the motion table M, d(j,i,t) corresponds
to the motion delta value for a pixel at time t, h(j,i,t-1)
corresponds to the motion delta value for a pixel at time t-1,
and gain[comp] corresponds to a gain associated with the
color of the pixel.

In addition to the motion table lookup index (m), the
motion table (M) may be indexed according to a brightness
value (b) for the respective pixel. As mentioned above, as
image brightness increases, filtering artifacts may become
more noticeable to the human eye. Thus, the filter coefficients
(K) in the motion table (M) may be indexed such that the filter
coefficients (K) may decrease as the brightness value of the
pixel increases. In one embodiment, the motion table (M)
may be set to a number of brightness levels such that each
brightness level may be defined as a percentage of a maxi-
mum brightness value. In this manner, the filter coefficients
(K) may be adjusted based on the brightness level of the pixel.

In one embodiment, the brightness level adjusted filter
coefficients (K) may be represented in the motion table (M)
by setting the motion table (M) to multiple brightness levels.
That is, multiple motion tables may be used to represent the
motion table (M) for each brightness level such that each of
the multiple motion table may include filter coefficients (K)
adjusted according to the brightness level of the pixel. For
instance, the motion table (M) may be set to three brightness
levels such that each of the three brightness levels may be
associated with a respective motion table (e.g., motion table
(M1), (M2), and (M3)). Each respective motion table may
include 65 entries. The three brightness levels may corre-
spond to 0% of the maximum brightness value for the respec-
tive pixel, 50% of the maximum brightness value for the
respective pixel, and 100% of the maximum brightness value
for the respective pixel.

Alternatively, the motion table (M) may be set to five
brightness levels (e.g., motion table (M1), (M2), (M3), (M4),
and (M5)) such that each motion table may include 65 entries.
The five brightness levels may correspond to 0% of the maxi-
mum brightness value for the respective pixel, 25% of the
maximum brightness value for the respective pixel, 50% of
the maximum brightness value for the respective pixel, 75%
of'the maximum brightness value for the respective pixel, and
100% of the maximum brightness value for the respective
pixel. FIG. 12A and FIG. 12B illustrate the three brightness
level and five brightness level embodiments described above.

Although the motion table (M) has been described as being
set to multiple brightness levels, it should be noted that in one
embodiment the motion table (M) may be set to just one
brightness level. In this case, the motion table (M) may be a
one-dimensional table with 257 entries that may be stored in
a corresponding memory.

Keeping the foregoing in mind, at block 1118, the temporal
filter block 1028 may determine a brightness value of the
respective pixel. Atblock 1120, the temporal filter block 1028
may determine whether the motion table (M) is set to more
than one brightness level. If the motion table (M) is set to one
brightness level, the temporal filter block 1028 may proceed
to block 1124. If, however, the motion table (M) is set to more
than one brightness level, the temporal filter block 1028 may
proceed to block 1122.

When the motion table is set to one brightness level, at
block 1124, the temporal filter block 1028 may determine a

US 9,105,078 B2

111

motion table filter coefficient (e.g., K) based on the single
motion table (M) and the motion table lookup index (m) of the
respective pixel. The process for determining the motion table
filter coefficient (K) is described in greater detail below with
reference to FIG. 98, which describes a method 1150 for
determining a motion table filter coefficient (K) for the
respective pixel.

Referring to FIG. 98, at block 1152, the temporal filter
block 1028 may identify at least two motion table lookup
indexes (e.g., m1 and m2) for the motion table (M). The two
identified motion table lookup indexes (m1 and m2) for the
motion table (M) may correspond to two motion table lookup
indexes that are adjacent to (e.g., above and below) the motion
table lookup index (m) for the respective pixel determined at
block 1116. Here, the temporal filter block 1028 may identify
atleast two motion table lookup indexes (e.g., m1 and m2) for
the motion table (M) because the motion table (M) may not
have an index value that exactly matches the motion table
lookup index (m) determined at block 1116. By identifying
the atleast two motion table lookup indexes (e.g., m1 and m2)
adjacent to the motion table lookup index (m), the temporal
filter block 1028 may be able to interpolate a filter coefficient
value that corresponds to the motion table lookup index (m)
using the filter coefficient values for the two motion table
lookup indexes (e.g., m1 and m2). In this manner, the tempo-
ral filter block 1028 may determine a filter coefficient that
may most effectively filter the respective pixel.

Keeping this mind, at block 1154, the temporal filter block
1028 may use the two adjacent motion table lookup indexes
(m1 and m?2) and retrieve two motion table filter coefficients
(e.g., K1 and K2) from the motion table (M). In one embodi-
ment, the motion table filter coefficients may be determined
based on the following equation:

K=M/[b][m]=M/x(j,i,t)][gain_rad*gain[comp]*
(d(,i,0)+h(,i,t-1))]
where b, m, x(j,i,t), gain_rad, gain[comp], d(j,i,t), and h(j,],
t-1) are the same as defined above.

At block 1156, the temporal filter block 1028 may linearly
interpolate the two motion table filter coefficients (e.g., K1
and K2) retrieved from the motion table (M) to determine an
interpolated motion table filter coefficient (K3).

Referring back to FIG. 95, at block 1126, the temporal filter
block 1028 may linearly interpolate the interpolated motion
table filter coefficient (K3) with the brightness value (b) of the
respective pixel (from block 1118) to determine a final filter
coefficient (e.g., K) for the respective pixel.

Referring back to block 1120, if the motion table (M) is set
to more than one brightness level, the temporal filter block
1028 may proceed to block 1122. Atblock 1122, the temporal
filter block 1028 may identify at least two brightness levels
(e.g., brightness levels 1 & 2) that are adjacent to the bright-
ness value (b) for the respective pixel. As such, the temporal
filter block 1028 may identify two brightness levels that cor-
respond to a brightness level above and below the brightness
value of the respective pixel. Here, the temporal filter block
1028 may identify the two brightness levels above and below
the brightness value of the respective pixel because none of
the brightness levels may exactly matches the brightness
value of the pixel. By identifying the two brightness levels
above and below the brightness value of the respective pixel,
the temporal filter block 1028 may be able to interpolate a
filter coefficient value for the respective pixel that account for
the brightness value of the respective pixel.

After identifying the two brightness levels adjacent to the
brightness value of the respective pixel, at block 1124, the
temporal filter block 1028 may determine two motion table

10

15

20

25

30

35

40

45

50

55

60

65

112

filter coefficients (e.g., K1 & K2) that correspond to the two
motion tables (e.g., motion table 1 & 2) associated with the
two identified brightness levels (e.g., brightness level 1 & 2).
As mentioned above, the process for determining the motion
table filter coefficients is described in greater detail with
reference to FIG. 98.

Referring again to FIG. 98, at block 1152, the temporal
filter block 1028 may first identify at least two motion table
lookup indexes for each motion table associated with two
brightness levels (e.g., index 1 and 2 for motion table 1; index
3 and 4 for motion table 2). The two identified motion table
lookup indexes for each motion table may correspond to
motion table lookup indexes that are adjacent to (e.g., above
and below) the motion table lookup index (m) for the respec-
tive pixel. As mentioned above, by identifying the two motion
table lookup indexes for each motion table associated with
two brightness levels (e.g., index 1 and 2 for motion table 1;
index 3 and 4 for motion table 2), the temporal filter block
1028 may be able to interpolate a filter coefficient value for
each brightness level even though each motion table may not
have an index value that exactly matches the motion table
lookup index (m) determined at block 1116.

Keeping this in mind, at block 1154, the temporal filter
block 1028 may retrieve two motion table filter coefficients
from each motion table (e.g., K3 & K4 from motion table 1,
K5 & K6 from motion table 2) using the two adjacent motion
table lookup indexes (e.g., index 1 and 2 for motion table 1;
index 3 and 4 for motion table 2). In one embodiment, the
motion table filter coefficients may be determined based the
equations listed above.

At block 1156, the temporal filter block 1028 may linearly
interpolate the two motion table filter coefficients from each
motion table (K3 & K4 from motion table 1, K5 & K6 from
motion table 2) to determine an interpolated motion table
filter coefficient that most closely corresponds to a filter coet-
ficient that may have been retrieved from the motion tables
(motion table 1 & 2) using the motion table lookup index (m)
determined at block 1116.

Referring back to FIG. 95, atblock 1126, the temporal filter
block 1028 may linearly interpolate the two interpolated
motion table filter coefficients (K1 and K2) determined at
block 1124 with the brightness value (b) of the respective
pixel determined at block 1118. As a result, the temporal filter
block 1028 may determine a final filter coefficient (e.g., K) for
the respective pixel that has been adjusted to account for the
motion occurring within the respective pixel and the bright-
ness value of the pixel. That is, since noise variance changes
with the brightness and motion values of a pixel, the temporal
filter block 1028 may modify the filtering strength (filter
coefficient) to account for motion occurring within a pixel
and a brightness value of the pixel, thereby avoiding trailing
or ghosting artifacts from being displayed in the image.

In addition to the processes described above with reference
to FIG. 95 and FIG. 98, additional temporal filtering steps
may be performed to further remove noise from the image
data received by the temporal filter block 1028. This noise,
however, may not be related to the motion occurring within a
pixel. For instance, FIG. 99 illustrates a process diagram
depicting a temporal filtering process 1160 that may be per-
formed within the temporal filter block 1028. As shown in
process 1160, the temporal filter block 1028 may include a
2-tap filter such that its filter coefficients may be adjusted
adaptively on a per pixel basis based at least partially upon
motion and brightness data. In one embodiment, temporal
filter block 1028 may perform the processes described above
with reference to FIG. 95 and FIG. 98 in a first tap of the
temporal filtering process 1160 (the motion table 1162). As

US 9,105,078 B2

113

shown in FIG. 99, the temporal filter block 1028 may output
a motion history value h(t) and a filter coefficient (K) for each
pixel in the raw image data from the motion table 1162.

In one embodiment, after determining the filter coefficient
(K) from the motion table 1162, the temporal filter block 1028
may use the brightness value (b) of the respective pixel x(j,1,t)
to generate a luma table lookup index (1) in a luma table (L)
1164. As mentioned above, as image brightness increases,
filtering artifacts may become more noticeable to the human
eye. Thus, the filtering strength may be further reduced when
apixel has a high level of brightness. In one embodiment, the
luma table (L) may contain attenuation factors that between 0
and 1 that may be used to account for the brightness of the
image without regard to the motion occurring within the
image. In one embodiment, the attenuation factors from the
luma table (L) may be selected based upon the luma table
lookup index (1).

As such, a second filter coefficient, K', may be calculated
by multiplying the first filter coefficient (K) by the luma
attenuation factor, as shown in the following equation:

K'=KxL[gain_rad*gain[comp|*x(,7,7)]

The determined value for K' may then be used as the
filtering coefficient by the temporal filter block 1028. As such,
the temporal filter block 1028 may account for the motion of
each pixel of the image with reference to its brightness value
and may account for the brightness value of each pixel of the
image independent of its motion value. In one embodiment,
the temporal filter block 1028 may be an infinite impulse
response (IIR) filter using previous filtered frame or as a finite
impulse response (FIR) filter using previous original frame.
The temporal filter block 1028 may compute the filtered
output pixel (Yout) using the current input pixel x(t), the
reference pixel r(t-1), and the filter coefficient K' using the
following formula:

YGLO=xGL0+K (r(7,i,t-1)-x(,i,1))

The temporal filtering process 1160 shown in FIG. 99 may be
performed on a pixel-by-pixel basis. In one embodiment, the
same motion table (M) and luma table (L) may be used for all
color components (e.g., R, G, and B).

Defective Pixel Correction (DPC)

Referring back to FIG. 91, the output of the temporal filter
block 1028 is subsequently forwarded to the defective pixel
correction logic 1030. In one embodiment, the temporal filter
block 1028 may forward signed 17-bit data to the defective
pixel detection and correction (DPC) logic 1030 which may
be capable of operating on signed pixels. As discussed above
with reference to FIG. 48 (DPR logic 474), defective pixels
may attributable to a number of factors, and may include
“hot” (or leaky) pixels, “stuck™ pixels, and “dead pixels,
wherein hot pixels exhibit a higher than normal charge leak-
age relative to non-defective pixels, and thus may appear
brighter than non-defective pixel, and wherein a stuck pixel
appears as always being on (e.g., fully charged) and thus
appears brighter, whereas a dead pixel appears as always
being off. As such, it may be desirable to have a pixel detec-
tion scheme that is robust enough to identify and address
different types of failure scenarios. Particularly, when com-
pared to the DPR logic 474, which may provide only dynamic
defect detection/correction, the DPR logic 1030 may provide
for fixed or static defect detection/correction, dynamic defect
detection/correction, as well as speckle removal.

Inaccordance with embodiments of the presently disclosed
techniques, defective pixel correction/detection performed
by the DPR logic 1030 may occur independently for each
color component (e.g., R, B, Gr, and Gb), and may include

10

15

20

25

30

35

40

45

50

55

60

65

114

various operations for detecting defective pixels, as well as
for correcting the detected defective pixels. For instance, in
one embodiment, the defective pixel detection operations
may provide for the detection of static defects, dynamics
defects, as well as the detection of speckle, which may referto
the electrical interferences or noise (e.g., photon noise) that
may be present in the imaging sensor. By analogy, speckle
may appear on an image as seemingly random noise artifacts,
similar to the manner in which static may appear on a display,
such as a television display. Further, as noted above, dynamic
defection correction is regarded as being dynamic in the sense
that the characterization of a pixel as being defective at a
given time may depend on the image data in the neighboring
pixels. For example, a stuck pixel that is always on maximum
brightness may not be regarded as a defective pixel if the
location of the stuck pixel is in an area of the current image
that is dominate by bright white colors. Conversely, if the
stuck pixel is in a region of the current image that is domi-
nated by black or darker colors, then the stuck pixel may be
identified as a defective pixel during processing by the DPR
logic 1030 and corrected accordingly.

With regard to static defect detection, the location of each
pixel is compared to a static defect table, which may store data
corresponding to the location of pixels that are known to be
defective. For instance, in one embodiment, the DPR logic
1030 may monitor the detection of defective pixels (e.g.,
using a counter mechanism or register) and, if a particular
pixel is observed as repeatedly failing, the location of that
pixel is stored into the static defect table. Thus, during static
defect detection, if it is determined that the location of the
current pixel is in the static defect table, then the current pixel
is identified as being a defective pixel, and a replacement
value is determined and temporarily stored. In one embodi-
ment, the replacement value may be the value of the previous
pixel (based on scan order) of the same color component. The
replacement value may be used to correct the static defect
during dynamic/speckle defect detection and correction, as
will be discussed below. Additionally, if the previous pixel is
outside of the raw frame 308 (FIG. 21), then its value is not
used, and the static defect may be corrected during the
dynamic defect correction process. Further, due to memory
considerations, the static defect table may store a finite num-
ber of location entries. For instance, in one embodiment, the
static defect table may be implemented as a FIFO queue
configured to store a total of 16 locations for every two lines
of image data. The locations in defined in the static defect
table will, nonetheless, be corrected using a previous pixel
replacement value (rather than via the dynamic defect detec-
tion process discussed below). As mentioned above, embodi-
ments of the present technique may also provide for updating
the static defect table intermittently over time.

Embodiments may provide for the static defect table to be
implemented in on-chip memory or off-chip memory. As may
be appreciated, using an on-chip implementation may
increase overall chip area/size, while using an oft-chip imple-
mentation may reduce chip area/size, but increase memory
bandwidth requirements. Thus, it should be understood that
the static defect table may be implemented either on-chip or
off-chip depending on specific implementation requirements,
i.e., the total number of pixels that are to be stored within the
static defect table.

The dynamic defect and speckle detection processes may
be time-shifted with respect to the static defect detection
process discussed above. For instance, in one embodiment,
the dynamic defect and speckle detection process may begin
after the static defect detection process has analyzed two scan
lines (e.g., rows) of pixels. As can be appreciated, this allows

US 9,105,078 B2

115

for the identification of static defects and their respective
replacement values to be determined before dynamic/speckle
detection occurs. For example, during the dynamic/speckle
detection process, if the current pixel was previously marked
as being a static defect, rather than applying dynamic/speckle
detection operations, the static defect is simply corrected
using the previously assessed replacement value.

With regard to dynamic defect and speckle detection, these
processes may occur sequentially or in parallel. The dynamic
defect and speckle detection and correction that is performed
by the DPR logic 1030 may rely on adaptive edge detection
using pixel-to-pixel direction gradients. In one embodiment,
the DPR logic 1030 may select the eight immediate neighbors
of'the current pixel having the same color component that are
within the raw frame 308 (FIG. 21) are used. In other words,
the current pixels and its eight immediate neighbors PO, P1,
P2, P3, P4, PS5, P6, and P7 may form a 3x3 area, as shown
below in FIG. 63.

It should be noted, however, that depending on the location
of'the current pixel P, pixels outside the raw frame 310 are not
considered when calculating pixel-to-pixel gradients. For
example, with regard to the “top-left” case 1172 shown in
FIG. 100, the current pixel P is at the top-left corner of the raw
frame 308 and, thus, the neighboring pixels PO, P1, P2, P3,
and P5 outside of the raw frame 308 are not considered,
leaving only the pixels P4, P6, and P7 (N=3). In the “top” case
1174, the current pixel P is at the top-most edge of the raw
frame 308 and, thus, the neighboring pixels PO, P1, and P2
outside of the raw frame 308 are not considered, leaving only
the pixels P3, P4, PS5, P6, and P7 (N=5). Next, in the “top-
right” case 1176, the current pixel P is at the top-right corner
of'the raw frame 308 and, thus, the neighboring pixels PO, P1,
P2, P4, and P7 outside of the raw frame 308 are not consid-
ered, leaving only the pixels P3, P5, and P6 (N=3). In the
“left” case 1178, the current pixel P is at the left-most edge of
the raw frame 308 and, thus, the neighboring pixels PO, P3,
and P5 outside of the raw frame 308 are not considered,
leaving only the pixels P1, P2, P4, P6, and P7 (N=5).

In the “center” case 1180, all pixels PO-P7 lie within the
raw frame 308 and are thus used in determining the pixel-to-
pixel gradients (N=8). In the “right” case 1182, the current
pixel P is at the right-most edge of the raw frame 308 and,
thus, the neighboring pixels P2, P4, and P7 outside of the raw
frame 308 are not considered, leaving only the pixels PO, P1,
P3, P5, and P6 (N=5). Additionally, in the “bottom-left” case
1184, the current pixel P is at the bottom-left corner of the raw
frame 308 and, thus, the neighboring pixels PO, P3, P5, P6,
and P7 outside of the raw frame 308 are not considered,
leaving only the pixels P1, P2, and P4 (N=3). In the “bottom”
case 1186, the current pixel P is at the bottom-most edge of
the raw frame 308 and, thus, the neighboring pixels PS5, P6,
and P7 outside of the raw frame 308 are not considered,
leaving only the pixels PO, P1, P2, P3, and P4 (N=5). Finally,
in the “bottom-right” case 1188, the current pixel P is at the
bottom-right corner of the raw frame 308 and, thus, the neigh-
boring pixels P2, P4, P5, P6, and P7 outside of the raw frame
308 are not considered, leaving only the pixels PO, P1, and P3
(N=3).

In one embodiment, the DPR logic 1030 may correct for
defective pixels from the bottom-left part of the image to the
top-right part of the image. As such, when a pixel being
evaluated is not at the boundaries of the raw frame 308,
neighboring pixels PO-P4 may not have been corrected by the
DPR logic 1030, while the defects in the neighboring pixels
P5-P7 may have been corrected (if any defects were present).
In another embodiment, when a pixel being evaluated is at the
top edge, pixel PO may be uncorrected and instead pixel P3

10

15

20

25

30

35

40

45

50

55

60

65

116

may be replicated in the place of pixel PO. Similarly, when a
pixel being evaluated is at the bottom edge, pixel PS5 may be
uncorrected and instead P3 may be replicated in its place.

Thus, depending upon the position of the current pixel P,
the number of pixels used in determining the pixel-to-pixel
gradients may be 3, 5, or 8. In the illustrated embodiment, for
each neighboring pixel (k=0 to 7) within the picture boundary
(e.g., raw frame 308), the pixel-to-pixel gradients may be
calculated as follows:

G=abs(P-P,), for O=k=7 (only for k within the raw
frame)

where the value for each pixel (k=0 to 7) is a 17-bit signed
value. An average gradi